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EDITORS'  PREFACE. 

The  volume  called  Higher  Mathematics,  the  first  edition 

of  which  was  published  in  1896,  contained  eleven  chapters  by 
eleven  authors,  each  chapter  being  independent  of  the  others, 

but  all  supposing  the  reader  to  have  at  least  a  mathematical 

training  equivalent  to  that  given  in  classical  and  engineering 
colleges.  The  publication  of  that  volume  is  now  discontinued 

and  the  chapters  are  issued  in  separate  form.  In  these  reissues 

it  will  generally  be  found  that  the  monographs  are  enlarged 

by  additional  ̂   articles  or  appendices  which  either  ampHfy  the 
former  presentation  or  record  recent  advances.  This  plan  of 

publication  has  been  arranged  in  order  to  meet  the  demand  of 
teachers  and  the  convenience  of  classes,  but  it  is  also  thought 

that  it  may  prove  advantageous  to  readers  in  special  lines  of 
mathematical  Hterature. 

It  is  the  intention  of  the  publishers  and  editors  to  add  other 

monographs  to  the  series  from  time  to  time,  if  the  call  for  the 
same  seems  to  warrant  it.  Among  the  topics  which  are  under 

consideration  are  those  of  eUiptic  functions,  the  theory  of  num- 

bers, the  group  theory,  the  calculus  of  variations,  and  non- 
Euclidean  geometry;  possibly  also  monographs  on  branches  of 

astronomy,  mechanics,  and  mathematical  physics  may  be  included. 

It  is  the  hope  of  the  editors  that  this  form  of  publication  may 

tend  to  promote  mathematical  study  and  research  over  a  wider 
field  than  that  which  the  former  volume  has  occupied. 

December,  1905.  ij* 

X 



AUTHOR'S  PREFACE. 

Since  this  Introduction  to  Vector  Analysis  and  Quaternions 
was  first  published  in  1896,  the  study  of  the  subject  has  become 
much  more  general;  and  whereas  some  reviewers  then  regarded 
the  analysis  as  a  luxury,  it  is  now  recognized  as  a  necessity  for 
the  exact  student  of  physics  or  engineering.  In  America,  Pro- 

fessor Hathaway  has  pubHshed  a  Primer  of  Quaternions  (New 
York,  1896),  and  Dr.  Wilson  has  amplified  and  extended  Pro- 

fessor Gibbs'  lectures  on  vector  analysis  into  a  text-book  for  the 
use  of  students  of  mathematics  and  physics  (New  York,  1901). 
In  Great  Britain,  Professor  Henrici  and  Mr.  Turner  have  pub- 

lished a  manual  for  students  entitled  Vectors  and  Rotors  (London, 
1903);  Dr.  Knott  has  prepared  a  new  edition  of  Kelland  and 

Tait's  Introduction  to  Quaternions  (London,  1904);  and  Pro- 
fessor Joly  has  realized  Hamilton's  idea  of  a  Manual  of  Quater- 
nions (London,  1905).  In  Germany  Dr.  Bucherer  has  pub- 
lished Elemente  der  Vektoranalysis  (Leipzig,  1903)  which  has 

now  reached  a  second  edition. 

Also  the  writings  of  the  great  masters  have  been  rendered 

more  accessible.  A  new  edition  of  Hamilton's  classic,  the  Ele- 
ments of  Quaternions,  has  been  prepared  by  Professor  Joly 

(London,  1899,  1901);  Tait's  Scientific  Papers  have  been  re- 
printed in  collected  form  (Cambridge,  1898,  1900);  and  a  com- 

plete edition  of  Grassmann's  mathematical  and  physical  works 
has  been  edited  by  Friedrich  Engel  with  the  assistance  of  several 

of  the  eminent  mathematicians  of  Germany  (Leipzig,  1894-). 
In  the  same  interval  many  papers,  pamphlets,  and  discussions 

have  appeared.  For  those  who  desire  information  on  the  litera- 
ture of  the  subject  a  Bibliography  has  been  published  by  the 

Association  for  the  promotion  of  the  study  of  Quaternions  and 
Allied  Mathematics  (Dublin,  1904). 

There  is  still  much  variety  in  the  matter  of  notation,  and  the 
relation  of  Vector  Analysis  to  Quaternions  is  still  the  subject 

of  discussion  (see  Journal  of  the  Deutsche  Mathematiker-Ver- 
einigung  for  1904  and  1905). 

Chatham,  Ontario,  Canada,  December,  1905. 
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VECTOR    ANALYSIS    AND    QUATERNIONS. 

Art.  1.    Introduction. 

By  "  Vector  Analysis  "  is  meant  a  space  analysis  in  which 

the  vector  is  the  fundamental  idea  ;  by  '*  Quaternions  "  is  meant 
a  space-analysis  in  which  the  quaternion  is  the  fundamental 
idea.  They  are  in  truth  complementary  parts  of  one  whole; 

and  in  this  chapter  they  will  be  treated  as  such,  and  developed 
so  as  to  harmonize  with  one  another  and  with  the  Cartesian 

Analysis.*  The  subject  to  be  treated  is  the  analysis  of  quanti- 
ties in  space,  whether  they  are  vector  in  nature,  or  quaternion 

in  nature,  or  of  a  still  different  nature,  or  are  of  such  a  kind  that 

they  can  be  adequately  represented  by  space  quantities. 

Every  proposition  about  quantities  in  space  ought  to  re- 

main true  when  restricted  to  a  plane ;  just  as  propositions 
about  quantities  in  a  plane  remain  true  when  restricted  to  a 

straight  line.  Hence  in  the  following  articles  the  ascent  to  the 

algebra  of  space  is  made  through  the  intermediate  algebra  of 

the  plane.  Arts.  2-4  treat  of  the  more  restricted  analysis, 
while  Arts.  5-10  treat  of  the  general  analysis. 

This  space  analysis  is  a  universal  Cartesian  analysis,  in  the 
same  manner  as  algebra  is  a  universal  arithmetic.  By  provid- 

ing an  explicit  notation  for  directed  quantities,  it  enables  their 

general  properties  to  be  investigated  independently  of  any 

particular  system  of  coordinates,  whether  rectangular,  cylin- 

drical, or  polar.     It  also  has  this  advantage  that  it  can  express 

*For  a  discussion  of  the  relation  of  Vector  Analysis  to  Quaternions,  see 
Nature,  1891-1893. 
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the  directed  quantity  by  a  linear  function  of  the  coordinates, 

instead  of  in  a  roundabout  way  by  means  of  a  quadratic  func- 
tion. 

The  different  views  of  this  extension  of  analysis  which  have 

been  held  by  independent  writers  are  briefly  indicated  by  the 
titles  of  their  works  : 

Argand,  Essai  sur  una  maniere  de  representer  les  quantit^s 

imaginaires  dans  les  constructions  geometriques,  1806. 

Warren,  Treatise  on  the  geometrical  representation  of  the  square 

roots  of  negative  quantities,  1828. 

Moebius,  Der  barycentrische  Calcul,  1827. 

Bellavitis,  Calcolo  delle  EquipoUenze,  1835. 

Grassmann,  Die  lineale  Ausdehnungslehre,  1844. 

De  Morgan,  Trigonometry  and  Double  Algebra,  1849. 

O'Brien,  Symbolic  Forms  derived  from  the  conception  of  the 
translation  of  a  directed  magnitude.  Philosophical  Transactions, 

1851. 

Hamilton,  Lectures  on  Quaternions,  1853,  and  Elements  of 

Quaternions,  1866. 

Tait,  Elementary  Treatise  on  Quaternions,  1867. 

Hankel,  Vo'rlesungen  iiber  die  complexen  Zahlen  und  ihre 
Functionen,  1867. 

Schlegel,  System  der  Raumlehre,  1872. 

Hoiiel,  Theorie  des  quantites  complexes,  1874. 

Gibbs,  Elements  of  Vector  Analysis,  1881-4. 
Peano,  Calcolo  geometrico,  1888. 

Hyde,  The  Directional  Calculus,  1890. 

Heaviside,  Vector  Analysis,  in  "  Reprint  of  Electrical  Papers," 
1885-92. 

Macfarlane,  Principles  of  the  Algebra  of  Physics,  1891.  Papers 

on  Space  Analysis,  1891-3. 

An  excellent  synopsis  is  given  by  Hagen  in  the  second  volume 

of  his  "Synopsis  der  hoheren  Mathematik." 

Art.  2.    Addition  of  Coplanar  Vectors. 

By  a  "  vector  "  is  meant  a  quantity  which  has  magnitude 
and  direction.     It  is  graphically  represented  by  a  line  whose 
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length  represents  the  magnitude  on  some  convenient  scale,  and 

whose  direction  coincides  with  or  represents  the  direction  of 

the  vector.  Though  a  vector  is  represented  by  a  line,  its 
physical  dimensions  may  be  different  from  that  of  a  line.  Ex- 

amples are  a  linear  velocity  which  is  of  one  dimension  in 

length,  a  directed  area  which  is  of  two  dimensions  in  length, 
an  axis  which  is  of  no  dimensions  in  length. 

A  vector  will  be  denoted  by  a  capital  italic  letter,  as  B*  its 
magnitude  by  a  small  italic  letter,  as  b,  and  its  direction  by  a  small 

Greek  letter,  as  yS.  For  example,  B  —  bfi,  R=  rp.  Sometimes 

it  is  necessary  to  introduce  a  dot  or  a  mark  /  to  separate 

the  specification  of  the  direction  from  the  expression  for  the 

magnitude  ;f  but  in  such  simple  expressions  as  the  above,  the 

difference  is  sufficiently  indicated  by  the  difference  of  type.  A 

system  of  three  mutually  rectangular  axes  will  be  indicated, 

as  usual,  by  the  letters  i,j\  k. 

The  analysis  of  a  vector  here  supposed  is  that  into  magni- 
tude and  direction.  According  to  Hamilton  and  Tait  and 

other  writers  on  Quaternions,  the  vector  is  analyzed  into  tensor 

and  unit-vector,  which  means  that  the  tensor  is  a  mere  ratio 

destitute  of  dimensions,  while  the  unit-vector  is  the  physical 

magnitude.  But  it  will  be  found  that  the  analysis  into  magni- 
tude and  direction  is  much  more  in  accord  with  physical  ideas, 

and  explains  readily  many  things  which  are  difficult  to  explain 

by  the  other  analysis. 

A  vector  quantity  may  be  such  that  its  components  have  a 

common  point  of  application  and  are  applied  simultaneously; 

or  it  may  be  such  that  its  components  are  applied  in  succes- 
sion, each  component  starting  from  the  end  of  its  predecessor. 

An  example  of  the  former  is  found  in  two  forces  applied  simul- 
taneously at  the  same  point,  and  an  example  of  the  latter  in 

*  This  notation  is  found  convenient  by  electrical  writers  in  order  to  harmo- 

tiize  with  the  Hospitalier  system  of  symbols  and  abbreviations. 

f  The  dot  was  used  for  this  purpose  in  the  author's  Note  on  Plane  Algebra, 
1883;  Kennelly  has  since  used  Z  for  the  same  purpose  in  his  electrical  papers 
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two  rectilinear  displacements  made  in  succession  to  one  an-^ 
other. 

Composition  of  Components  having  a  common  Point  of 

Application. — Let  OA  and  OB  represent  two  vectors  of  the 
same  kind  simultaneously  applied  at  the  point  O.     Draw  BC 

g  f^  parallel  to  OA,  and  AC  parallel  to  OB,  and 

join  OC.  The  diagonal  OC  represents  in  mag- 
nitude and  direction  and  point  of  application 

o  ^      the  resultant  of  OA  and  OB.     This  principle 
was  discovered  with  reference  to  force,  but  it  applies  to  any 

vector  quantity  coming  under  the  above  conditions. 

Take  the  direction  of  OA  for  the  initial  direction  ;  the  di- 

rection of  any  other  vector  will  be  sufficiently  denoted  by  the 

angle  round  which  the  initial  direction  has  to  be  turned  in 

order  to  coincide  with  it.  Thus  OA  may  be  denoted  by 

//o,  OB  by /,/^,,  OC  by//6[.  From  the  geometry  of  the  fig- 
ure it  follows  that 

and  tan  d  =  ̂   V  !!"    '  ̂   ; 
/.  +/,  cos  6/, 

/,  sin  e^ 
hence  OC  =  V/^  +  f^  +  2/,/,  cos  d^  /tan'^^  _^^^  ̂^^  ̂^. 

Example. — Let  the  forces  applied  at  a  point  be  2/0"  and 

3/60°.      Then   the  resultant  is  1/4  +  9+  12  X  i-  /tan -^  ? — 5 

If  the  first  component  is  given  as/, /6^,,  then  we  have  the 

more  symmetrical    formula 

OC  ̂   f/.' +/«  +  ././,  COS  (.,-.,  I^jX^^X^Xk 
When  the  components  are  equal,  the  direction  of  the  re- 

sultant bisects  the  angle  formed  by  the  vectors ;  and  the  mag- 

nitude of  the  resultant  is  twice  the  projection  of  either  compo- 
nent on  the  bisecting  line.     The  above  formula  reduces  ta 

OC  =  2/  cos  ̂   /-'. 
2/2 
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Example. — The  resultant  of  two  equal  alternating  electro- 

motive forces  which  differ  1 20°  in  phase  is  equal  in  magnitude 

to  either  and  has  a  phase  of  60°. 
Given  a  vector  and  one  component,  to  find  the  other  com-i 

ponent. — Let  OC  represent  the  resultant,  and  OA  the  compo- 

nent. Join  AC  and  draw  OB  equal  and  g  ^ 
parallel  to  AC.  The  line  OB  represents 

the  component  required,  for  it  is  the  only  y^ 

line  which  combined  with  OA  gives  OC  a'  o  a 
as  resultant.  The  line  OB  is  identical  with  the  diagonal  of  the 

parallelogram  formed  by  OC  and  OA  reversed ;  hence  the  rule 

is,  **  Reverse  the  direction  of  the  component,  then  compound 

it  with  the  given  resultant  to  find  the  required  component." 
Let  f/B  be  the   vector   and  fjo   one  component ;  then  the 

other  component  is 

/sin  e fj^  =  Vr+f:  -  2fA  cos  ̂ /tan- 

-/+/cos^- Given  the  resultant  and  the  directions  of  the  two  compo- 

nents, to  find  the  magnitude  of  the  components. — The  resultant 
is  represented  by  OC,  and  the  directions  by  OX  and  OY. 

Y,  From   C  draw  CA  parallel  to  OY,  and  CB 
parallel  to  OX ;  the  lines  OA  and  OB  cut 

off  represent  the  required  components.  It 
is  evident  that  OA  and  OB  when  com- 

pounded  produce  the  given  resultant  OC, 

and  there  is  only  one  set  of  two  components  which  produces 
a  given  resultant ;  hence  they  are  the  only  pair  of  components 

having  the  given  directions. 

Let//6'  be  the  vector  and  /^  and  /d_^  the  given  directions. 
Then 

/.  +/,  cos  (<;,  -  e,)  =/cos  {0  -  e,), 

/.  cos  {e,  -  0,)  +/,  =/cos  (d,  -  ff), 
from  which  it  follows  that 

^       jcos  {e  ̂   e,)  -  COS  (e,  -  S)  cos  (e,  -  e,)  \ 
'^'~^  I  -  cos'  {(i,  -  6,) 
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For  example,  let  100/60°,  /30°,  and  /qo"  be  given ;  then 

.  cos  30° •^ '  I  +  cos  60° 

Composition  of  any  Number  of  Vectors  applied  at  a  com- 

mon Point. — The  resultant  may   be   found  by   the    following 

graphic  construction  :  Take  the  vectors  in  any  order,  a.s  AjByC' 

Q  From  the  end  of  A  draw  B'  equal  and  par- 
allel to  Bj  and  from  the  end  of  B'  draw  C^ 

.g  equal  and  parallel  to  C;  the  vector  from 

the  beginning  of  A  to  the  end  of  C^  is  the 
resultant  of  the  given  vectors.  This  follows 

by  continued  application  of  the  parallelo- 

gram construction.  The  resultant  obtained  is  the  same,  what^ 
ever  the  order;  and  as  the  order  is  arbitrary,  the  area  enclosed 

has  no  physical  meaning. 
The  result  may  be  obtained  analytically  as  follows : 

Given  /,/e,  +  /y^,  +  /s/^s  +  .  •  •  +  /n  /On, 

Now  /,/6,  =/,  cos  ejo_-\-f,  sin  d,  /^. 

Similarly  f  J_0^  =  /,  cos  6',/o +/,  sin  6,  /^, 

and  /„/^  =  /„  cos  0„/o  +/„  sin  (i„   /^. 

Hence  2\//d\  =  i:Vcos  0\  /o_-{-  {J^/sin  6]    /- 

2/  SMI  0 =  i/(^/cos  Oy  +  (^/sin  Oy  .  tan-^^?^^^. 

In  the  case  of  a  sum  of  simultaneous  vectors  applied  at  a  com- 

mon point,  the  ordinary  rule  about  the  transposition  of  a  term  in 

an  equation  holds  good.  For  example,  if  A  -]-B  ~{-  C  —  o,  then 
A  -{-  B  =r  -^  C,  Bind  A  -{-  C  =  -  B,  Rnd  B  -{-  C  =  -  A,  etc. 

This  is  permissible  because  there  is  no  real  order  of  succession 

among  the  given  components.* 

*  This  does  not  hold  true  of  a  sum  of  vectors  having  a  real  order  of  succes- 

sion.    It  is  a  mistake  to  attempt  to  found  space-analysis  upon  arbitrary  formal 
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Composition  of  Successive  Vectors. — The  composition  of 

successive  vectors  partakes  more  of  the  nature  of  multiplica- 
tion than  of  addition.  Let  ̂   be  a  vector  start- 

ing from  the  point  O,  and  B  a  vector  starting 

from  the  end  of  A.  Draw  the  third  side  OP,  / 

and  from  O  draw  a  vector  equal  to  B^  and  from 

its  extremity  a  vector  equal  to  A.  The  line  OP  is  not  the 

complete  equivalent  of  ̂   +  -^1  if  it  were  so,  it  would  also  be 

the  complete  equivalent  of  B  -\-  A.  But  A  -{-  B  and  B  -{-A 

determine  different  paths ;  and  as  they  go  oppositely  around, 

the  areas  they  determine  with  OP  have  different^  signs.  The 

diagonal  OP  represents  A  -{-  B  only  so  far  as  it  is  consid- 

ered independent  of  path.  For  any  number  of  successive 

vectors,  the  sum  so  far  as  it  is  independent  of 

path  is  the  vector  from  the  initial  point  of  the 

first  to  the  final  point  of  the  last.  This  is  also 

true  when  the  successive  vectors  become  so  small 

as  to  form  a  continuous  curve.  The  area  between 

the  curve  OPQ  and  the  vector  OQ  depends  on  the  path,  and 

has  a  physical  meaning. 

Prob.  I.  The  resultant  vector,  is  123/45°,  and  one  component 

is  100/0°;  find  the  other  component. 

Prob.  2.  The  velocity  of  a  body  in  a  given  plane  is  200  /75°,  and 

one  component  is  100/25°;  find  the  other  component. 
Prob.  3.  Three  alternating  magnetomotive  forces  are  of  equal 

virtual  value,  but  each  pair  differs  in  phase  by  120°;  find  the  re- 
sultant.    (Ans.  Zero.) 

Prob.  4.  Find  the  components  of  the  vector  100/70°  in  the  direc- 
tions 20°  and  100°. 

Prob.  5.  Calculate  tlie  resultant  vector  of  1/10°,  2/20°,  3/30°, 

4/40°' Prob.  6.  Compound  the  following  magnetic  fluxes:  /i  sin  ///  -f- 

^  sin  («/  —  i2o°)/t2o°  +  ̂   sin  (nf  —  24o°)/24o°.     (Ans.  \h/?it.) 

laws;  the  fundamental  rules  must  be  made  to  express  universal  properties  of  the 

thing  denoted.  In  this  chapter  no  attempt  is  made  to  apply  formal  laws  to 

directed  quantities.     What  is  attempted  is  an  analysis  of  these  quantities. 
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Prob.  7.  Compound  two  alternating  magnetic  fluxes  at  a  point, 

a  cos  nt  /o  and  a  sin  nt  /  — .      (Ans.  a  /ni.) 

/    2  
— Prob  8.  Find  the  resultant  of  two  simple  alternating  electromo- 

tive forces  100/20°  and  50/75°. 

Prob.  9.  Prove  that  a  uniform  circular  motion  is  obtained  by- 
compounding  two  equal  simple  harmonic  motions  which  have  the 

space-phase  of  their  angular  positions  equal  to  the  supplement  of  the 
time-phase  of  their  motions. 

Art.  3.  Products  of  Coplanar  Vectors. 

When  all  the  vectors  considered  are  confined  to  a  common 

plane,  each  may  be  expressed  as  the  sum  of  two  rectangular 

components.  Let  i  and/  denote  two  directions  in  the  plane  at 

right  angles  to  one  another  ;  then  A  =  a  J,  -f"  ̂ij\  B  =  b^i  -j-  b^j\ 

R-=xi-\-yj.  Here  i  and  y  are  not  unit-vectors,  but  rather 
signs  of  direction. 

Product  of  two  Vectors.  — Let  A—  a^i-^aj  and  B  =  b^ir\-hJ 
be  any  two  vectors,  not  necessarily  of  the  same  kind  physically. 

We  assume  that  their  product  is  obtained  by  applying  the 
<iistributive  law,  but  we  do  not  assume  that  the  order  of  the 
factors  is  indifferent.  Hence 

AB  =  {a,i  +  aJ){b,iAr  KJ)  =  ̂ fi.ii  -f  a^bjj -{-  afi^ij -\- aJ)JL 

If  we  assume,  as  suggested  by  ordinary  algebra,  that  the 

•square  of  a  sign  of  direction  is  -j-,  and  further  that  the  product 
of  two  directions  at  right  angles  to  one  another  is  the  direction 

normal  to  both,  then  the  above  reduces  to 

AB  =  aj)^  +  aj)^  +  {afi^  —  a^b^k. 

Thus  the  complete  product  breaks  up  into  two  partial 

products,  namely,  ̂ /i -j- <^A  which  is  independent  of  direc- 
tion, and  {a^b^  —  a^b^)k  which  has  the  axis  of  the  plane  for 

direction.* 

*  A  common  explanation  which  is  given  of  ij  =  >^  is  that  i  is  an  operator,/ an 

•operand,  and  k  the  result.  The  kind  of  operator  which  i  is  supposed  to  denote 

is  a  quadrant  of  turning  round  the  axis  i  ;  it  is  supposed  not  to  be  an  axis,  but 

a  quadrant  of  rotation  round  an  axis.  This  explains  the  result  iJ  =  k,  but 

unfortunately  it  does  not  explain  ii  =  +  ;  for  it  would  give  ii  =  i. 
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Scalar  Product  of  two  Vectors. — By  a  scalar  quantity  is 
meant  a  quantity  which  has  magnitude  and  may  be  positive  or 
negative  but  is  destitute  of  direction.  The  former  partial 
product  is  so  called  because  it  is  of  such  a  nature.  It  is 
denoted  by  SAB  where  the  symbol  S,  being  in  Roman  type, 
denotes,  not  a  vector,  but  a  function  of  the 

vectors  A  and  B.  The  geometrical  mean- 

ing of  SAB  is  the  product  of  A  and  the  | 

orthogonal  projection  of  i5  upon  A.  Let  i,  t 

OP  and  OQ  represent  the  vectors  A  and  B;  \\ 

draw   QM  and  NL  perpendicular  to   OP.  o^Z^Z^ 
Then 

(OP)(OM)  =  (OP)(OL)  +  (OP)(LM), 

=  ̂ {^-f+''-a\' 

Corollary  I. — SB  A  =  SAB.  For  instance,  let  A  denote  a 
force  and  B  the  velocity  of  its  point  of  application  ;  then  S^^ 

denotes  the  rate  of  working  of  the  force.  The  result  is  the 

same  whether  the  force  is  projected  on  the  velocity  or  the 

velocity  on  the  force. 

Example  i. — A  force  of  2  pounds  East  +  3  pounds  North  is 
moved  with  a  velocity  of  4  feet  East  per  second  +  5  feet  North 

per  second ;  find  the  rate  at  which  work  is  done. 

2X4+3X5=  23  foot-pounds  per  second. 

Corollary  2. — A^  =i  a^*  +  a^^  —  0^,  The  square  of  any  vector 
is  independent  of  direction  ;  it  is  an  essentially  positive  or 

signless  quantity ;  for  whatever  the  direction  of  A,  the  direction 
of  the  other  A  must  be  the  same ;  hence  the  scalar  product 

cannot  be  negative. 

Example  2. — A  stone  of  10  pounds  mass  is  moving  with  a 
velocity  64  feet  down  per  second  +  100  feet  horizontal  per 

second.    Its  kinetic  energy  then  is 

—  (64'  +  100')  foot-poundals. 
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a  quantity  which  has  no  direction.  The  kinetic  energy  due  to 

the  downward  velocity  is  lO  X  —  and  that  due  to  the  hori- 2 

zontal  velocity  is  —  X  lOo'*;  the  whole  kinetic  energy  is  ob- 

tained, not  by  vector,  but  by  simple  addition,  when  the  com- 

ponents are  rectangular. 

Vector  Product  of  two  Vectors. — The  other  partial  product 

from  its  nature  is  called  the  vector  product,  and  is  denoted  by 

YAB.      Its    geometrical    meaning    is    the 

product  of  A  and  the  projection  of  i?  which 

is  perpendicular  to  Ay  that  is,  the  area  of 

the  parallelogram  formed  upon  A  and  B, 

Let  OP  and  OO  represent  the  vectors  A 

L._^i.__>  i  and  By  and  draw  the  lines  indicated  by  the 
figure.       It  is  then  evident  that  the  area 

of  the  triangle  OPQ  =  a,b^  —  ̂ a,a^  —  ̂ b^b^  —  ̂ (a,  —  b,){b,  —  a,)y 

=  i(^,^,  -  a^b,). 
Thus  {a^b^  —  ajb^k  denotes  the  magnitude  of  the  parallelo- 

grarn  formed  by  A  and  B  and  also  the  axis  of  the  plane  in 
which  it  lies. 

It  follows  that  VBA  =  —  NAB,  It  is  to  be  observed 

that  the  coordinates  of  A  and  B  are  mere  component  vectors, 
whereas  A  and  B  themselves  are  taken  in  a  real  order. 

Example. — Let  ̂   =  (iO^+  117)  inches  and  B  —  {^i-\-  12 j) 
inches,  then  YAB  =  (120—  55)/^  square  inches;  that  is,  65 
square  inches  in  the  plane  which  has  the  direction  k  for  axis. 

If  A  is  expressed  as  aa  and  B  as  bj3,  then  S^^  =  ab  cos  a^y 

where  aj3  denotes  the  angle  between  the  directions  a  and  y5. 

Example. — The  effective  electromotive  force  of  100  volts 

per  inch  /go°  along  a  conductor  8  inch  /45°  is  SAB  =  8  X  100 

cos  /45°  /9o°  volts,  that  is,  800  cos  45°  volts.  Here  /45°  indicates 

the  direction  a  and  790°  the  direction  y^,  and  745°  790°  means 

the  angle  between  the  direction  of  45°  and  the  di^-ection  of  90°. 
Also  VAB=  ab  sin  a^  .  aft,  where  a^  denotes  the  direction 

which  is  normal  to  both  a  and  y^,  that  is,  their  pole. 
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Example. — At  a  distance  of  lo  feet  730°  there  is  a  force  of 
100  pounds  /6o°.     The  moment  is  WAB 

=  10  X  100  sin  /30^  /6o°  pound-feet  907  790° 

=  1000  sin  30°  pound-feet  90°/  /go°. 

Here  90°/  specifies  the  plane  of  the  angle  and  /go°  the  angle. 
The  two  together  written  as  above  specify  the  normal  Jb. 

Reciprocal  of  a  Vector. — By  the  reciprocal  of  a  vector  is 
meant  the  vector  which  combined  with  the  original  vector  pro- 

duces the  product  +  !•  The  reciprocal  of  A  is  denoted 

by  A~\  Since  AB  =  ab  (cos  a/?-)- sin  «/?.  afi),  b  must  equal 

a~^  and  /?  must  be  identical  with  a  in  order  that  the  product 
may  be  i.     It  follows  that 

_  I     _  <^«  _  <^i^  +  ̂ J 

a         a         a'  +  a^ 

The  reciprocal  and  opposite  vector  is  —  A~\     In  the  figure 
let  OP  =  2^  be  the  given  vector ;  then  OQ  =  \^  is  its  recipro- 

cal, and  OR  =  ̂ (  —  y5)  is  its  reciprocal  and 

opposite."*  R         Q  P 

Example.— If  ̂   =   10  feet  East  +  5   feet  North,  A-^  = 

—    feet     East  +  —    feet    North    and  —  A-'  =     feet 
125  ^   125  125 

East   —    —  feet  North. 
125 

Product  of  the  reciprocal  of  a  vector  and  another  vector. — 

A-'B  =  -.AB, 

=  ̂ \^A  +  ̂ A  +  i^A  -  ̂ A)^}* 

=  -  (cos  a/3  -j-  sin  a/3 .  a/3), 

*  Writers  who  identify  a  vector  with  a  quadrantal  versor  are  logically  led  to 

define  the  reciprocal  of  a  vector  as  being  opposite  in  direction  as  well  as  recii>- 
rocal  in  magnitude. 
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b  b    
Hence  S^-'i5  =  -cos  aQ  and  YA-'B  =  -sin  aB .  ati. a  '  a  '        ' 

Product  of  three  Coplanar  Vectors. — Let  A  =  aj  +  a^jj 
B  =  b^t  +  b^j,     C  =  cj  +  c^j  denote  any  three  vectors  in  a 
common  plane.     Then 

{AB)C  =  {{a,b,  +  aA)  +  (^/,  -  ̂ AWi^^^  +  cj) 

=  (^/i  +  ̂A)(^i^*  +  ̂ J)  +  i^A  -  aA)(-  ̂ J  +  ̂^y  )• 
The  former  partial  product  means  the  vector  C  multiplied 

R\  by  the  scalar  product  of  A  and  B  ;  while  the 

/P  latter   partial   product    means  the  comple- 

/c  mentary  vector  of  C  multiplied  by  the  mag- 
nitude of  the  vector  product  of  A  and  B. 

^   J    If  these  partial  products  (represented  by  OP 
and  OQ)  unite  to  form  a  total  product,  the  total  product  will  be 

represented  by  OR,  the  resultant  of  OP  and  OQ. 

The  former  product  is  also  expressed  by  SAB .  C,  where  the 

point  separates  the  vectors  to  which  the  S  refers  ;  and  more 

analytically  by  abc  cos  a/3 .  y. 

The  latter  product  is  also  expressed  by  {'VAB)C,  which  is 
equivalent    to    y(VAB)C,  because  YAB  is  at    right    angles 

to  C.  It  is  also  expressed  by  abc  sin  a^ .  a^y,  where  afty  de- 
notes the  direction  which  is  perpendicular  to  the  perpendicular 

to  a  and  ft  and  y. 

If  the  product  is  formed  after  the  other  mode  of  association 
we  have 

A{BC)  =  iaj+  aj){b,c,  +  b,c,)  +  {a,i  +  aj){b,c,  -  b,c,)k 

=  {b,c,  +  b^c^)(a,i  +  a,j)  +  {b,c,  -  b,c;)(a,i  -  a, J) 

=zSBC.A  +YA{VBC). 

The  vector  aj  —  a  J  is  the  opposite  of  the  complementary 

sector  of  aj,  +  a^j.  Hence  the  lattei  partial  product  differs 
with  the  mode  of  association. 

Example.— Let   yi    =  i/o  +  2/90°,     ̂   =  3/0°  +  4/90;^, 

iC  —  5/0°  +  6/90°.     The  fourth  proportional  to  A,  B,  C  is 
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(A-'B)C=  '  ̂ 3+^X4  j  5/0°  +  6/90°  ( I     -f-  2 

+  '  ̂,f~,^^  ̂ 1-6/0° +5/90°} I     -j-  2 

=  134/0° +  11.2/90°. 

Square  of  a  Binomial  of  Vectors. — If  A  -]-  B  denotes  a 
sum  of  non-successive  vectors,  it  is  entirely  equivalent  to  the 

resultant  vector  C.  But  the  square  of  any  vector  is  a  positive 

scalar,  hence  the  square  oi  A  -\-  B  must  be  a  positive  scalar. 
Since  A  and  B  are  in  reaHty  components  of  one  vector,  the 

square  must  be  formed  after  the  rules  for  the  products  of  rect- 

angular components  (p.  432).     Hence 

{AJrBy  =  {A-^B){A+B), 

=  A'  +  AB  +  BA  +  B\ 

=  .4'  +  ̂^  +  S^^  +  '^BA  +  ̂ lAB  +  NBA, 

=  A'  +  B'  +  2SAB, 

This  may  also  be  written  in  the  form 

d  -^-b"  -{•  2ab  cos  ap. 

But  when  A  -\-  B  denotes  a  sum  of  successive  vectors,  there 

is  no  third  vector  C  which  is  the  complete  equivalent ;  and  con- 

sequently we  need  not  expect  the  square  to  be  a  scalar  quan- 

tity. We  observe  that  there  is  a  real  order,  not  of  the  factors, 

but  of  the  terms  in  the  binomial ;  this  causes  both  product 

terms  to  be  AB,  giving 

=  ̂ «  4_  ̂^  +  2^AB  +  2SIAB, 

The  scalar  part  gives  the  square  of  the  length  of  the  third 

side,  while  the  vector  part  gives  four  times  the  area  included 

between  the  path  and  the  third  side. 

Square  of  a  Trinomial  of  Coplanar  Vectors. — Let^  +^-[- 
C  denote  a  sum  of  successive  vectors.  The  product  terms  must 

be  formed  so  as  to  preserve  the  order  of  the  vectors  in  the  tri- 
nomial ;  that  is,  A  is  prior  to  B  and  (7,  and  B  is  prior  to  C, 
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Hence 

{A  -{-B  +  Cy  ̂ A'  +  B'  +  r-i-  2AB+  2AC+  2BC, 

=  A'  +  B'  +  C  +  2{SAB  •i-SAC-\-  SBC),  (i) 
+  2{Y  AB  +  V^  (T  +  VBC),  (2) 

Hence  S{A  +  B  +  Cy  =  (i) 

=  «'  -j-  ̂'  +  ̂^  +  2ad  cos  a/3  -\-  2ac  cos  ay  -\-  2bc  cos  fty 

and  N{A^B^Cy  =  {2) 

=^\2ab  sin  a^  +  ̂^^  sin  a:;/  +  2bc  sin  y^/}.  ary^ 

'The  scalar  part  gives  the  square  of  the  vector  from  the  be- 
^     ginning  of  A  to  the  end  of  C  and  is  all  that  exists 

when  the  vectors  are  non-successive.     The  vector 

/^  part  is  four  times  the  area  included  between  the 
successive   sides   and   the   resultant   side  of   the 

~^     "       polygon. 
Note  that  it  is  here  assumed  that  N{A  ̂ B)Cz=VAC  + 

YBC,  which  is  the  theorem  of  moments.     Also  that  the  prod- 
uct terms  are  not  formed  in  cycHcal  order,  but  in  accordance 

with  the  order  of  the  vectors  in  the  trinomial. 

Example.— Let  A  =  3/0^  B  =  5/30°,  C  =  7/45°  ;  find  the 
area  of  the  polygon. 

iV{AB+AC+BC), 

=  ili5sin/o/30°  +  2i  sin/o/^°  +  35sin/30°/45_°!, 
=  375 +  742 +  4.53  =  1 57- 

Prob.  10.  At  a  distance  of  25  centimeters  /2o°  there  is  a  force 

of  1000  dynes  /8o°;  find  the  moment. 
Prob.  II.  A  conductor  in  an  armature  has  a  velocity  of  240 

inches  per  second  7300°  and  the  magnetic  flux  is  50,000  lines  per 
jsquare  inch  /o;  find  the  vector  product. 

(Ans.   1.04  X  10'  lines  per  inch  per  second.) 
Prob.  12.  Find  the  sine  and  cosine  of  the  angle  between  the 

directions  0.8141  E.  +  0.5807  N.,  and  0.5060  E.  +  0.8625  N. 

Prob.  13.  When  a  force  of  200  pounds  7270°  is  displaced  by 

10  feet  73o°>  what  is  the  work  done  (scalar  product)  ?  What  is  the 
meaning  of  the  negative  sign  in  the  scalar  product  ? 
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Prob.  14.  A  mass  of  loo  pounds  is  moving  with  a  velocity  of  30 
feet  E.  per  second  +  50  feet  SE.  per  second;  find  its  kinetic  energy. 

Prob.  15.  A  force  of  10  pounds  745°  is  acting  at  the  end  of  8 

feet  /2oo°;  find  the  torque,  or  vector  product. 

Prob.  16.  The  radius  of  curvature  of  a  curve  is  2/0°  +  5/90°; 

find  the  curvature.  (Ans.  .03/0°  -f  .17/90°.) 

Prob.  17.  Find  the  fourth  proportional  to  10/0°  +  2/90° 

8/0°  -  3/V,  and  6/o_°  +  5/90^.  ~ Prob.  18.  Find  the  area  of  the  polygon  whose  successive  sides 

are  10/30°,  9/100°,  8/180°,  7/225°. 

Art.  4.    Coaxial  Quaternions. 

By  a  *'  quaternion  "  is  meant  the  operator  v^^hich  changes 
one  vector  into  another.  It  is  composed  of  a  magnitude  and 

a  turning  factor.  The  magnitude  may  or  may  not  be  a  mere 

ratio,  that  is,  a  quantity  destitute  of  physical  dimensions ;  for 

the  two  vectors  may  or  may  not  be  of  the  same  physical  kind. 

The  turning  is  in  a  plane,  that  is  to  say,  it  is  not  conical.  For 

the  present  all  the  vectors  considered  lie  in  a  common  plane ; 

hence  all  the  quaternions  considered  have  a  common  axis.* 
Let  A  and  R  be  two  coinitial  vectors  ;  the  direction  normal 

to  the  plane  may  be  denoted   by  ft.     The   operator   which 

changes  A  into  R  consists  of  a  scalar  multiplier 

and  a  turning  round  the  axis  /?.    Let  the  former  be 

denoted  by  r  and  the  latter  by  ̂ ^  where  6  denotes 

the  angle  in  radians.     Thus  R  =  r/3^A  and  recip- 

rocally A  =  -6-^R.     Also  ̂ R  =  r/3^  and  ̂ A  =  -6-\ ^  r  A  ^  R  r 

The  turning  factor  /?^  may  be  expressed  as  the  sum  of  two 
component  operators,  one  of  which  has  a  zero  angle  and  the 

other  an  angle  of  a  quadrant.     Thus 

yS«  =  cos  6^ .  yS<^  +  sin  ̂   .  ̂^/\ 

*  The  idea  of  the  "quaternion  "  is  due  to  Hamilton.  Its  importance  may 
be  judged  from  the  fact  that  it  has  made  solid  trigonometrical  analysis  possible. 

It  is  the  most  important  key  to  the  extension  of  analysis  to  space.  Etymologi- 

cally  "quaternion"  means  defined  by  four  elements;  which  is  true  in  space  •  in 
plane  analysis  it  is  defined  by  two. 
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When  the  angle  is  naught,  the  turning-factor  may  be 
omitted ;  but  the  above  form  shows  that  the  equation  is 

homogeneous,  and  expresses  nothing  but  the  equivalence  of  a 

given  quaternion  to  two  component  quaternions.*^ 

Hence  rft^  =  r  cos  6 -\-r  sm  0  .  ̂-"'^ 

and  rft^A  =pA  +g/3''/'A 

=  pa  ,  a  -j-ga  ,  /3'^/*ar. 
The  relations  between  r  and  6,  and  /  and  ̂ ,  are  given  by 

r  =  V/+7y    0  =  tan  -'t 

Example. — Let  E  denote  a  sine  alternating  electromotive 
force  in  magnitude  and  phase,  and  /  the  alternating  current  in 

magitude  and  phase,  then 

E=  {r  -{-  27tnl .  fi^/'% 
where  r  is  the  resistance,  /  the  self-induction,  n  the  alternations 

per  unit  of  time,  and  ̂   denotes  the  axis  of  the  plane  of  repre- 

sentation.    It  follows  that  E  —  rl  -\-  27tnl ,  ft'^/^I\  also  that 
I''E  =  r-]-27tnl.  ̂ -/^ 

that  is,  the  operator  which  changes  the  current  into  the  elec- 
tromotive force  is  a  quaternion.     The  resistance  is  the  scalar 

part  of  the  quaternion,  and  the  inductance  is  the  vector  part. 

Components  of  the  Reciprocal  of  a  Quaternion. — Given 

then  A  =  ■—. — ^-^-^  R 

R 
_/>  — ^.yg^/g 

*  In  the  method  of  complex  numbers  /S'r/a  is  expressed  by  i,  which  stands 

for  |/  —  I.  The  advantages  of  using  the  above  notation  are  that  it  is  capable 

of  being  applied  to  space,  and  that  it  also  serves  to  specify  the  general  turning 

factor  yS^  as  well  as  the  quadrantal  turning  factor  jS'^/i. 
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Example. — Take  the  same  application  as  above.  It  is  im- 
portant to  obtain  /  in  terms  of  E,  By  the  above  we  deduce 

that  from  E  —  {r-\-  2nnL  yS'^/^)/ 

/=  i   r   ^^^^         /gv^  I  E 
\r'+(27rn/y      r'  +  (27rn/y:^       )  ̂' 

Addition  of  Coaxial  Quaternions. — If  the  ratio  of  each  of 
several  vectors  to  a  constant  vector  A  is  given,  the  ratio  of 

their  resultant  to  the  same  constant  vector  is  obtained  by  tak- 
ing the  sum  of  the  ratios.     Thus,  if 

^n  =   (A  +  ?-  •  /S'-'V. 
then  2Ji=\:Sp+  (,2g) .  ̂'/^}A, 
and  reciprocally 

^-    {2pr  +  (2gy    ̂ ^- 
Example. — In  the  case  of  a  compound  circuit  composed 

of  a  number  of  simple  circuits  in  parallel 

A  -   r,'  +  {2nnri:     '  ^^  "    r,'  +  (2nnfi;  ̂ '   ̂^^'^ 

therefore,  :SY=  ̂ '  ]  ̂7,  ̂,^  '(a^    [  ̂ 

=  \    :^(  ,  ,  /     .^]  -  27rn2^-r7   xii5.y^'/«  I  E, 
I       \r^-}-(27tnyPj  r'-^{2nnyf  ̂       j      ' 

and  reciprocally 

^\  ,  ,  ̂̂      ,,  J  +  2  7tn:^\-^—-   --) .  fi-"/^ _      \r  -\-{2nnyiV      V  +  (2;r;g)VV  _^^ 

Product  of  Coaxial  Quaternions. — If  the  quaternions  which 
change  A  to  R,  and  R  to  R\  are  given,  the  quaternion  which 

changes  A  to  R'  is  obtained  by  taking  the  product  of  the  given 
quaternions. 

*This  theorem  was  discovered  by  Lord  Rayleigh;  Philosophical  Magazine, 

May,  1886.     See  also  Bedell  &  Crehore's  Alternating  Currents,  p.  238. 
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Given  R  =  r/3^A  =  {p  +  q,  /3^^')A 

and  R'  =  r'/3^'R  =  (/'  +  g\  y^'/^i?, 

then  R'  =  rr'fi'+''  A  ={{pp'  -  qq')  +  {pq'  -\.p'q) .  p-l^\A, 

Note  that  the  product  is  formed  by  taking  the  product  of 

the  magnitudes,  and  likewise  the  product  of  the  turning  fac- 

tors. The  angles  are  summed  because  they  are  indices  of  the 

common  base  y^.* 

Quotient  of  two  Coaxial  Quaternions. — If  the  given  qua- 

ternions are  those  which  change  A  to  R,  and  A  to  R' ,  then  that 

which  changes  R  to  R'  \s  obtained  by  taking  the  quotient  of 
the  latter  by  the  former. 

Given    R  =  rft^A  =  {p -\- q  ,  ̂^/^)A 

and  R'  =  r'jS^'A  =  (/  +  q' .  /3-/^)A, 

then  R'  =  ~  p''-'R, r 

=  (/  +  ,'.  ̂ ^^)-^-L^^R, 

_  (//  +  g/)  +  {pq'-p'q)  ■  ̂"r> 

Prob.  19.  The  impressed  alternating  electromotive  force  is  200 

volts,  the  resistance  of  the  circuit  is  10  ohms,  the  self-induction  is 
Yro  henry,  and  there  are  60  alternations  per  second  ;  required  the 

current.  (Ans.   18.7  amperes /-^£oV42^.) 
Prob.  20.  If  in  the  above  circuit  the  current  is  10  amperes,  find 

the  impressed  voltage. 

Prob.  21.  If  the  electromotive  force  is  no  volts  /_G  and  the  cur- 
rent is  10  amperes  /B  —  ̂ tt,  find  the  resistance  and  the  self-induc- 
tion, there  being  120  alternations  per  second. 

Prob.  22.  A  number  of  coils  having  resistances  r„  /-„  etc.,  and 
self-inductions  /i ,  4 ,  etc.,  are  placed  in  series  ;  find  the  impressed 
electromotive  force  in  terms  of  the  current,  and  reciprocally. 

*Many  writers,  such  as  Hayward  in  "Vector  Algebra  and  Trigonometry," 

and  Stringham  in  "  Uniplanar  Algebra,"  treat  this  product  of  coaxial  quater- 
nions as  if  it  were  the  product  of  vectors.  This  is  the  fundamental  error  in  the 

Argand  method. 
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Art.  5.    Addition  of  Vectors  in  Space. 

A  vector  in  space  can  be  expressed  in  terms  of  three  inde- 

pendent components,  and  when  these  form  a  rectangular  set 

the  directions  of  resolution  are  expressed  by  i,j,  k.  Any  vari- 

able vector  R  may  be  expressed  as  R  —  rp  =  xi -{- yj  -\- zk^  and 
any  constant  vector  B  may  be  expressed  as 

In  space  the  symbol  p  for  the  direction  involves  two  ele- 
ments.    It  may  be  specified  as 

xi  -\-  yj-\-  ̂ k 

where  the  three  squares  are  subject  to  the  condition  that  their 

sum  is  unity.  Or  it  may  be  specified  by  this  notation,  0//^, 

a  generalization  of  the  notation  for  a  plane.     The  additional 

angle  0/  is  introduced  to  specify  the  plane  in  which  the  angle 
from  the  initial  line  lies. 

If  we  are  given  R  in  the  form  r(p//d,  then  we  deduce  the 
other  form  thus : 

R  =  r  cos  ̂   .  /  +  ̂  sin  6  cos  <t>.j  -\-  r  sin  ̂   sin  0  .  k. 

If  R  is  given  in  the  form  xi  -\- yj  -\-  zk,  we  deduce 

R  =   s/x'  +/  +z'  tan-'y //  tan 
_,Vf  +  z^ 

For  example,    B  =  lo  30^//45 

=  lo  cos  45°.  ?+  10  sin  45°  cos  30°  ./-f  10  sin  45°  sin  30°. i^. 

Again,  from  C  =  3^*+  47  +  5^  we  deduce 

5  //._-.  ̂ 41 C=  1/9  +  16  +  25  tan-'  -  //  tan 

=  7.07  5i°.4//64^9. 
To  find  the  resultant  of  any  number  of  component  vectors 

applied  at  a  common  point,  let  R,,  7?„  .  .  .  R„  represent  the  n 
vectors  or, 
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then  :^R  =  {:^x)i  +  {^y);  +  {2z)k 

and  r  =  V{2xy  +  {^yf  +  (2z)% 

tan0  =  -^^    and     tan  (9  =     ̂     -^^^^      — ^. 

Successive  Addition. — When  the  successive  vectors  do  not 

lie  in  one  plane,  the  several  elements  of  the  area  enclosed  will 

He  in  different  planes,  but  these  add  by  vector  addition  into  a 
resultant  directed  area. 

Prob.  23.  Express  A  =  4/  —  5/'+  6k  and  B  =  5/+  6/  —  yk  in 

the  form  r'^/O.      (Ans.  8.8  1307/63°  and  10.5  J^/j6i^) 
Prob.  24.  Express  C=  123  S7°//jA2^  and  Z>  =  456  657/200° 

in  the  form  xi  +  J^'  +  ̂^^ 
^  T.  ^  //^        1     rn  n  / /   n  , 

Prob.  25.   Express  E  =  100  — //  -    and   E  =  1000  —  //  3—   m 4//   3  o//      4 

the  form  xi  -\-yj  +  zk. 

Prob.  26.  Find  the  resultant  of  10  207/30°,  20  307/40°,  and 

30^/5^°.  __ Prob.  27.  Express  in  the  form  r^//0  the  resultant  vector  of 

1/  +  2/  —  3/^,  4/  —  5;'  4-  6/^,  and  —  7/  +  8/'  -f-  9/^. 

Art.  6.    Product  of  two  Vectors. 

Rules  of  Signs  for  Vectors  in  Space. — By  the  rules  t^  =  +r 
y  =  -\-^  if—  k,  SLTidji  =z  —  k  we  obtained  (p.  432)  a  product  of 
two  vectors  containing  two  partial  products,  each  of  which  has 

the  highest  importance  in  mathematical  and  physical  analysis. 

Accordingly,  from  the  symmetry  of  space  we  assume  that  the 

following  rules  are  true  for  the  product  of  two  vectors  in  space  : 

t^  =  +.         y^  =  +,        >^'  =  +, 
if  =  k,  jk  —  i,  ki  =  j\ 
ji  =1  —  k,  kj^=.—  iy  ik  =  — y. 

The  square  combinations  give  results  which  are  indepen- 
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dent  of  direction,  and  consequently  are  summed  by  simple 

addition.  The  area  vector  determined  by 

^  and  yean  be  represented  in  direction  by  k, 

because  k  is  in  tri-dimensional  space  the  axis 
which  is  complementary  to  /and/.  We  also 

observe  that  the  three  rules  ij  =  k,  jk  =  z, 

ki  =y  are  derived  from  one  another  by  cyc- 
lical permutation ;  likewise  the  three  rules 

ji  =^  —  k,  kj  =  —  i,  ik  =  —J.  The  figure  shows  that  these 
rules  are  made  to  represent  the  relation  of  the  advance  to  the 

rotation  in  the  right-handed  screw.  The  physical  meaning  of 
these  rules  is  made  clearer  by  an  application  to  the  dynamo  and 

the  electric  motor.  In  the  dynamo  three  principal  vectors  have 

to  be  considered  :  the  velocity  of  the  conductor  at  any  instant, 

the  intensity  of  magnetic  flux,  and  the  vector  of  electromotive 

force.  Frequently  all  that  is  demanded  is,  given  two  of  these 

directions  to  determine  the  third.  Suppose  that  the  direction 

of  the  velocity  is  t,  and  that  of  the  flux/,  then  the  direction  of 

the   electromotive  force  is  k.     The   formula   ij  ̂^  k  becomes 

velocity  flux  =  electromotive-force, 
from  which  we  deduce 

flux  electromotive-force  —  velocity, 

and  electromotive-force  velocity  =  flux. 

The  corresponding  formula  for  the  electric  motor  is 

current  flux  =  mechanical-force, 

from  which  we  derive  by  cyclical  permutation 

flux  force  =  current,     and     force  current  =  flux. 

The  formula  velocity  flux  =  electromotive-force  is  much 

handier  than  any  thumb-and-finger  rule  ;  for  it  compares  the 

three  directions  directly  with  the  right-handed  screw. 

Example. — Suppose  that  the  conductor  is  normal  to  the 
plane  of  the  paper,  th^t  its  velocity  is  towards  the  bottom,  and 

that  the  magnetic  flux  is  towards  the  left ;  corresponding  to 

the  rotation  from  the  velocity  to  the  flux  in  the  right-handed 

screw  we  have  advance  into  the  paper:  that  then  is  the  direc- 
tion of  the  electromotive  force. 

Again,  suppose  that  in  a  motor  the  direction  of  the  current 
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along  the  conductor  is  up  from  the  paper,  and  that  the  mag- 
netic flux  is  to  the  left ;  corresponding  to  current  flux  we  have 

advance  towards  the  bottom  of  the  page,  which  therefore  must 

be  the  direction  of  the  mechanical  force  which  is  appHed  to 
the  conductor. 

Complete  Product  of  two  Vectors. — Let^  =  aJ,-\-aJ  -\-aJ^ 

and  B  =  bJ,-\-b^j  -{-  bji  be  any  two  vectors,  not  necessarily 
of  the  same  kind  physically.  Their  product,  according  to  the 

rules  (p.  444),  is 

AB  =  {a  J  +  aj+  a,k)(bj,  +  bj  +  b,k\ 

=  aJ)J,i-\-  ajb^jj  -\- a.bjzk, 
+  ajjjk  +  aj)jij  +  ajbjii  +  aj)j,k  +  a.bjj  +  ajjji 
=  a  J),  +  aj}^  +  aj)^, 

+  {aj)^  -  a,b,)i -\- {a,b,  -  a,b,)j-\-  {a,b^  —  a^b,)k 
z^a^b^-\-a^b^  +  a^b^-\-     a,     a^     a^ 

K      \    K 
i      J      k 

Thus   the   product  breaks  up  into   two   partial    products^ 

namely,  ajb^-^-  ̂ A+  ̂ 3^3 »  which  is  independent  of  direction,  and 
a^     a^     a^ 

by,     b^     b^     ,  which  has  the  direction  normal  to  the  plane  of 

i     j     k 
A  and  B.  The  former  is  called  the  scalar  product,  and  the 

latter  the  vector  product. 

In  a  sum  of  vectors,  the  vectors  are  necessarily  homogene- 

ous, but  in  a  product  the  vectors  may  be  heterogeneous.  By 

making  a^  =  b^  =  o,  we  deduce  the  results  already  obtained 

for  a  plane. 

Scalar  Product  of  two  Vectors. — The  scalar  product  is  de- 
noted as  before  by  SAB,  Its  geometrical 

meaning  is  the  product  of  ̂   and  the  orthog- 

onal projection  of  B  upon  A.  Let  OP  rep- 
resent A,  and  OQ  represent  B,  and  let  OL, 

P  LM,  and  MN  be  the  orthogonal  projections, 
upon  OP  of  the  coordinates  bJ,  bJ,  b^k  re. 

spectively.  Then  ON  is  the  orthogonal  pro- 
jection of  OQ.  and 
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OP  X  ON  =  OP  X  (OL  +  LM  +  MN), 

\    a  a  a  I' 
=  a^b^  +  «A  +  a^b^  —  SAB. 

Example.  —  Let  the  intensity  of  a  magnetic  flux  be 

B  =  bj  +  b^j  +  b^kf  and  let  the  area  he  S  =  sj  -\-  sj  +  sji  \ 

then  the  flux  through  the  area  is  SSB  —  b^s^  -\-  b^s^  +  b^s^. 

Corollary  i.— Hence  S^^  =  S^^.     For 

b,a,  +  b^a^  +  b^a^  =  a,b,  +  a,b,  +  a,b, . 
The  product  of  B  and  the  orthogonal  projection  on  it  of  ̂  

is  equal  to  the  product  of  A  and  the'  orthogonal  projection  on 
it  of  B.  The  product  is  positive  when  the  vector  and  the  pro- 

jection have  the  same  direction,  and  negative  when  they  have 

opposite  directions. 

Corollary  2. — Hence  A^  =  a^^  ■{-a^^-\-a^'' =  a^.  The  square  of 
A  must  be  positive  ;  for  the  two  factors  have  the  same  direction. 

Vector  Product  of  two  Vectors. — The  vector  product  as 
before  is  denoted  by  VAB.  It  means  the  product  of  A  and 

the  component  of  B  which  is  perpendicular  to  A,  and  is  rep- 
resented by  the  area  of  the  parallelogram  formed  by  A  and  B, 

The  orthogonal  projections  of  this  area  upon  the  planes  of  jk, 

ki,  and  ij  represent  the  respective  components  of  the  product. 

For,  let  OP  and  OQ  (see  second  figure  of  Art.  3)  be  the  or- 

thogonal projections  of  A  and  B  on  the  plane  of  i  and/;  then 

the  triangle  OPQ  is  the  projection  of  half  of  the  parallelogram 

formed  by  A  and  B.  But  it  is  there  shown  that  the  area  of 

the  triangle  OPQ  is  \(afi^  —  ajb^.  Thus  (aj?^  —ajb^k  denotes 
the  magnitude  and  direction  of  the  parallelogram  formed  by 

the  projections  of  A  and  B  on  the  plane  of  i  and/  Similarly 

{a.J?^  —  aj)^i  denotes  in  magnitude  and  direction  the  projec- 

tion on  the  plane  of  j  and  k,  and  {ajb^  —  afi^j  that  on  the 
plane  of  k  and  i. 

Corollary  i.— Hence  NBA  =  -  YAB. 

Example. — Given  two  lines  A  =1  yi  —  loj  -\-  ̂ k  and  B  = 

—  92  +  4/—  6k  \  to  find  the  rectangular  projections  of  the  par- 
allelogram which  they  define  : 
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VAB  =  (60  -  I2>-  +  (-  27  +  42);*+  (28  -  90)^ 

=  482  +  1 57'  —  62>^. 

Corollary  2. — If  ̂   is  expressed  as  aa  and  ̂   as  bftj  then 

S^^  =  ab  cos  o'y^  and  V^^  =  ab  sin  a/?  .  a/H,  where  a/3  de- 
notes the  direction  which  is  normal  to  both  a  and  fty  and 

drawn  in  the  sense  given  by  the  right-handed  screw.         • 

Example.— Given  A  =  r^/d_  and  B  =  r'^J/&_,     Then 

S^^  =  rr'  cos  ̂ /^07/^ 

=  /-r'jcos  ̂   cos  d''  -j"  sin  ̂   sin  ̂ '  cos  (0'  —  0)J. 

Product  of  two  Sums  of  non-successive  Vectors. — Let  A  and 

B  be  two  component  vectors,  giving  the  resultant  A  -{-  B,  and 

let  C  denote  any  other  vector  having  the  same  point  of  appli- 
cation. 

^  Let  A  =  a  J  +  ̂^J  +  ̂z^* 

B  =  b,t  +  bJ+b,k, 

C  =  c,i-{-cJ  +  c,k. 

^  Since  A  and  B  are  independent  of  order, 

A-\-B  =  {a,-^r  b,)i  +  K  +  ̂ V  +  (^s  +  ̂s)^, 

•consequently  by  the  principle  already  established 

S(^  +  B)C  =  {a,  +  b,)c,  +  (a,  +  b,)c,  +  {a,  +  b,)c, 

=  ̂ /,  +  a^c^  +  ̂3^,  +  <^/,  +  b^c^  +  <^,(r. 

Similarly  V(^  +B)C  =  IK  +  ̂.Vs  -  K  +  ̂ 3K!^*+  etc. 

=  (^,<:,  —  ̂ 3^,)2  +  (^/3  —  <^8^»)^"  +  •  •  • 

=  V^(7  +  V.56'. 

Hence  {A  +  B)C  =^  AC-^ BC 

In  the  same  way  it  may  be  shown  that  if  the  second  factor 

consists  of  two  components,  C  and  D,  which  are  non-successive 
in  their  nature,  then 

{A-\-B){C+D)  =  AC+AD  +  BC-\-BD, 
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When  A  -{-  B  is  a,  sum  of  component  vectors 

{A  +  BY  =  A'  +  B'  +  AB  +  BA 
=  A'+B'  +  2SAB. 

Prob.  28.  The  relative  velocity  of  a  conductor  is  S.W.,  and  the 
magnetic  flux  is  N.W.;  what  is  the  direction  of  the  electromotive 
force  in  the  conductor  ? 

Prob.  29.  The  direction  of  the  current  is  vertically  downward, 

that  of  the  magnetic  flux  is  West;  find  the  direction  of  the  mechani- 
cal force  on  the  conductor. 

Prob.  30.  A  body  to  which  a  force  of  2/  -\-  y -\-  4k  pounds  is 

applied  moves  with  a  velocity  of  5/+  6/*+  jk  feet  per  second;  find the  rate  at  which  work  is  done. 

Prob.  31.  A  conductor  8/+  gj  -{-  io>^  inches  long  is  subject  to 
an  electromotive  force  of  11/ +  12/+  i^k  volts  per  inch;  find. the 
difference  of  potential  at  the  ends.  (Ans.  326  volts.) 

Prob.  32.  Find  the  rectangular  projections  of  the  area  of  the 

parallelogram    defined   by  the   vectors   ̂   =  12/ —  23/"  —  34^   and 
B=  -45^'-  567 +  67/^. 

Prob.  33.  Show  that  the  moment  of  the  velocity  of  a  body  with 

respect  to  a  point  is  equal  to  the  sum  of  the  moments  of  its  com- 
ponent velocities  with  respect  to  the  same  point. 

Prob.  34.  The  arm  is  9/+  11;'+  13^  feet,  and  the  force  applied 
at  either  end  is  17/+  19/'+  23^^  pounds  weight;  find  the  torque. 

Prob.  35.  A  body  of  1000  pounds  mass  has  linear  velocities  of  50 

feet  per  second  3o°//45^,  and  60  feet  per  second  6o°//2  2°.5;  find 
its  kinetic  energy. 

Prob.  36.  Show  that  if  a  system  of  area-vectors  can  be  repre- 
sented by  the  faces  of  a  polyhedron,  their  resultant  vanishes. 

Prob.  37.  Show  that  work  done  by  the  resultant  velocity  is  equal 
to  the  sum  of  the  works  done  by  its  components. 

Art.  7.    Product  of  Three  Vectors. 

Complete    Product.— Let    us    take   A  =  a  J,  +  a  J  +  ajz, 

B  =  bj.  -f-  bj  +  bfi,  and  €  =  cj  +  c^j-j-  c^k.     By  the  product 
of  A,  B,  and  C\s  meant  the  product  of  the  product  o(  A  and 

B  with  C,  according  to  the  rules    p.  444).     Hence 

ABC  =  {a,b,  +  a,b,  +  a,b,)(c,t  +  cj+  c,k) 

+  i(^A  -  ̂ .'^,)^*+  (^3^,  -  ̂ 1^3)7  +  {afi.  -  a,b^k}{c^i-\-cJ-\-  c,k) 
=  {a,b,  +  a,b,  4-  a,b;){c,i  +  cj  +  c,k)  ( i) 
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+ a^a^ a,  a. a,  a^ 

KK b.b. b.  b^ 

c.             c,             c^ 
i J 

k      \ 

(2)  + a^  a^  a^ 

K  b.  b. 
(3) 

-3    6 

-31 

7    8       9 

i    j      k 
I      2      3 

=  0. 

4    5    6 
789 

Example. — Let  A  =  \i-\-2j -\-  3^,  B  =  41  -{-  5/  -|-  6k,  and 

C=yi  +  S/+gk.     Then 

(1)  ==(4+  10+  i8)(^  +  8;'+9^)=  32(7/  +  8y+9>^). 
(2)  =    -  3     6-3     =  ySz  +  6/-66k. 

(3) 

If  we  write  A  =aay  B  —  d/3,  C  =  cy,  then 
ABC  =  abc  cos  aft  .  y  (l) 

-[-  <3:^^  sin  o'/J  sin  afty .  afty  (2) 
-\-  abc  sin  a-/?  cos  apy,  (3) 

where  cos  «^;/  denotes  the  cosine  of  the  angle  between  the 

directions  aft  and  y,  and  afty  denotes  the  direction  which  is 

normal  to  both  aft  and  y. 

We  may  also  write 

ABC  =  SAB.  C-\-Y{YAB)C+  S(VAB)C, 

(I)  (2)  (3) 

First  Partial  Product. — It  is  merely  the  third  vector  multi- 
plied by  the  scalar  product  of  the  other  two,  or  weighted  by 

that  product  as  an  ordinary  algebraic  quantity.  If  the  direc- 
tions are  kept  constant,  each  of  the  three  partial  products  is 

proportional  to  each  of  the  three  magnitudes. 

Second  Partial  Product.— The  second  partial  product  may 
be  expressed  as  the  difference  of  two  products  similar  to  the 
first.     For 

V(VAB)C  =  {-{^c^  +  b,c,)a,  +  (^,^,  +  c,a,)b,\t 

+  1  -  (^3^3  +  b,c,)a,  +  {c,a,  -\-  c,a,)b,\j 

+  { -  ̂b,c^  +  VJ^3  +  (^1^1  +  C'>P^^b^\k, 
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33r 
By  adding  to  the  first  of  these  components  the  null  term 

{b^c^a^  —  c^afi^i  we  get  —  '^BC ,  aJ,-\-  ̂ CA  .  bj,,  and  by  treating 
the  other  two  components  similarly  and  adding  the  results  we 
obtain 

Vi^AE)C  =  -  ̂ BC .  A  +  ̂ CA  .  B. 

The  principle  here  proved  is  of  great  use  in  solving  equa- 
tions (see  p.  455). 

Example. — Take  the  same  three  vectors  as  in  the  preced- 
ing example.     Then 

V(V^^)(f=-(28  +  40+54)(i^'+2;>3^) 
+  (7  +  i6  +  27)(4/+5y  +  6>^) 

=  78/  +  6j  —  66k. 
The  determinant  expression  for  this  partial  product  may 

also  be  written  in  the  form 

b,  b. 

I    J 

b.  b. b.  b. 

c.  c. 

It  follows  that  the  frequently  occurring  determinant  expression 

d,d. 
+ 

b.b. d.d. + 

\Kb. 

d^d. 

b.b, 

means  S{VAB){VCD), 

Third  Partial  Product. — From  the  determinant  expression 
for  the  third  product,  we  know  that 

S(VAB)C=  S{YBC)A  =  S(YCA)B 

=  -  S{VBA)C  =  -  S(VCB)A  =  -  S(VAC)B. 

Hence  any  of  the  three  former  may  be  expressed  by  SABC, 

and  any  of  the  three  latter  by  —  SABC. 

The  third  product  S(VAB)C  is  represented  by  the  vol- 
ume of  the  parallelepiped  formed  by  the  vectors  A,  B,  C 

taken  in  that  order.  The  line  NAB  yab 

represents  in  magnitude  and  direction 

the  s  area  formed  by  A  and  B^  and  the 

product  of  VAB  with  the  projection 

of  C  upon  it  is  the  measure  of  the 

volume  in  magnitude  and  sign.  Hence  the  volume  formed 

by  the  three  vectors  has  no  direction  in  space,  but  it  is  posi- 
tive or  negative  according  to  the  cyclical  order  of  the  vectors. 
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In  the  expression  abc  sin  aft  cos  a^y  it  is  evident  that  sin  a^ 

corresponds  to  sin  6^,  and  cos  a^y  to  cos  0,  in  the  usual  for- 
mula for  the  volume  of  a  parallelepiped. 

Example. — Let  the  velocity  of  a  straight  wire  parallel  to 

itself  be  F  =  1000/30°  centimeters  per  second,  let  the  intensity 

of  the  magnetic  flux  h^  B  —  6000  /qo"  lines  per  square  cen- 

timeter, and  let  the  straight  wire  Z  =  15  centimeters  60°/  /45°. 

Then  YVB  =  6000000  sin  60°  90°/  /qo"  lines  per  centimeter  per 

second.  Hence  S(Y  VB)L  =  15  X  6000000  sin  60°  cos  0  lines 

per  second  where  cos0  =  sin  45°  sin  60°. 

Sum  of  the  Partial  Vector  Products. — By  adding  the  first 
and  second  partial  products  we  obtain  the  total  vector  product 

of  ABC,  which  is  denoted  by  V(ABC).  By  decomposing  the 

second  product  we  obtain 

V{ABC)  =  SAB.  C  -  SBC .  A  +  SCA  .  B. 

By  removing  the  common  multiplier  abc,  we  get 

Y(a/3y)  =  cos  a^  .  y  —  cos  /3y .  a  -\-  cos  ya  .  /?. 

Similarly  Y{/3ya)  =  cos  /3y  .  a  —  cos  ya .  /3  +  cos  a/3  .  y 

and  ^{ya/S)  =  cos  ya  ,  /3  —  cos  a/3  .  y  -\-  cos  /3y  .  a. 

These   three  vectors   have  the    same    magnitude,  for  the 

square  of  each  is 

cos'  a/3  +  cos"  /3y  -f  cos'  ya  —  2  cos  a/3  cos  /3y  cos  ya, 

^  thatis,i-is(^^r)r- 
They  have  the  directions  respectively  of  a' , 

\a   fi' ̂  y' ̂  which   are    the  corners  of    the    triangle 
whose   sides    are    bisected    by   the  corners    a, 

'fi'     /3t  y  o{  the  given  triangle. 
Prob.  38.  Find  the  second  partial  product  of 

9  2oV/30°,  10  30°/  /4o°,  II  45V /45°.  Also  the  third  partial 
product. 

Prob.  39.  Find  the  cosine  of  the  angle  between  the  plane  of 

/J-\-m^J-\-  nji  and  lJ-\-ni^;-\-  n^k  and  the  plane  of  l^i -{-m^j -\- nji 
and  IJi  +  m^j  +  njz. 

Prob.  40.  Find  the  volume  of  the  parallelepiped  determined  by 

the  vectors  iooi-\-^oj ^2^k,  50/+ lo/'  +  So/^,  and  —  7 5/ +  40;'— 80/^. 
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Prob.  41.  Find  the  volume  of  the  tetrahedron  determined  by  the 

extremities  of  the  following  vectors  :  3/  —  2;  +  i^,  —  4/  +  5/"  —  iky 
3/  —  y  —  2k,  8/  H-  4/'  —  sk. 

Prob.  42.  Find  the  voltage  at  the  terminals  of  a  conductor  when 

its  velocity  is  1500  centimeters  per  second,  the  intensity  of  the  mag- 
netic flux  is  7000  lines  per  square  centimeter,  and  the  length  of  the 

conductor  is  20  centimeters,  the  angle  between  the  first  and  second 

being  30°,  and  that  between  the  plane  of  the  first  two  and  the  direc- 
tion of  the  third  60°.  (Ans.  .91  volts.) 

Prob.  43.  Let  a  =  ̂ /W,  ft  =  Wl hs\  Y  =  4?7/35°-  Find 
YafSy,  and  deduce  Yf3ya  and  Yyafi. 

Art.  8.    Composition  of  Quantities. 

A  number  of  homogeneous  quantities  are  simultaneously- 
located  at  different  points ;  it  is  required  to  find  hovir  to  add  or 

compound  them. 

Addition  of  a  Located  Scalar  Quantity. — Let  Ma  denote  a 

mass  m  situated  at  the  extremity  of  the  radius- 

vector  A.     A  mass  m  —  m  may  be  introduced 

at  the  extremity  of  any  radius-vector  R,  so 
that 

m^  —  {fn  —  in)R  -\-  niA 
=imR-{-  m^  —  Mr 

=  niR  -\-  m{A  —  R). 

Here  A  —  R  is  a.  simultaneous  sum,  and  denotes  the  radius- 

vector  from  the  extremity  of  R  to  the  extremity  of  A.     The 

product  m(A  —  7?)  is  what  Clerk  Maxwell  called  a  mass-vector, 
and  means  the  directed  moment  of  m  with  respect  to  the  ex- 

tremity of  R.     The  equation  states  that   the   mass  m  at  the 

extremity  of  the  vector  A  is  equivalent  to  the  equal  mass  at 

the  extremity  of  R,  together  with  the  said  mass-vector  applied 
at  the  extremity  of  R.     The  equation  expresses  a  physical  or 

mechanical  principle. 

Hence  for  any  number  of  masses,  m^  at  the  extremity  of  A^y 

m^  at  the  extremity  of  A^,  etc., 

:2mA  =  :2mR  +  2\m{A  —  R)\, 
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where  the  latter  term  denotes  the   sum  of  the  mass-vectors 

treated  as  simultaneous  vectors  applied  at  a  common  point. 

Since  2{m(A  —  R)}  =  ̂ mA  —  2mR 
=  '2mA  —  R2m^ 

the  resultant  moment  will  vanish  if 

„      2mA  „^  ^     ̂  
R=—^^ — ,       or       R2m  =  2;mA 

Corollary. — Let       R  =  xi -\- j/j -\-  zk, 

and  A  =a^i  +  bj  -\-  c^k ; 

then  the  above  condition  may  be  written  as 

2{m{ai-{-bj-\-ck)\ 
xt+yj-\-2k  =   -^^   

__  2{md)  .  i  ,   (2mb)  .j.   2{mc) .  k 

2m  2m  2m     ' 

2(ma)  2(md)  2mc 

therefore  ^  =  -^^.     y  = -^ '    '  =  ̂ ^ 

Example. — Given    5   pounds   at    10  feet  45°//30°  and    8 

pounds  at  7  feet  6o°//45°  I  find  the  moment  when  both  masses 

are  transferred  to  12  feet  75°//^°* 

m^A^  =  5o(cos  30°^*  +  sin  30°  cos  45°/+  sin  30°  sin  45°/^), 

m^A^  =  56(cos  45°^'  +  sin  45°  cos  6o°y  +  sin  45°  sin  60°/^), 

{m^  +  m,)R  =  1 56(cos  60°/  +  sin  60°  cos  75°/  +  sin  60°  sin  75°/^), 

moment  =  m^A^  +  jn^A^  —  {m^  -\-  m^R. 

Composition  of  a  Located  Vector  Quantity. — Let  F^  de- 

note a  force  applied  at  the  extremity  of  the  radius-vector  A. 
As  a  force  F  —  F  may  introduced  at  the  ex- 

T  J      tremity  of  any  radius-vector  R,  we  have 

F^=(F-F),  +  F^ 

=  Fj,  +  Y{A-R)F 

This  equation  asserts  that  a  force  F  applied 

-at  the  extremity  of  A  is  equivalent  to  an  equal  force  applied 
at  the  extremity  of  R  together  with  a  couple  whose  magnitude 
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and  direction  are  given  by  the  vector  product  of  the  radius- 
vector  from  the  extremity  of  R  to  the  extremity  of  A  and  the 
force. 

Hence  for  a  system  of  forces  applied  at  different  points, 

such  as  Fj  at  y4j,  /^,  at  y^a,  etc.,  we  obtain 

^      :2{FJ)  =  2{F^)  +  2V{A  -  R)F 
=  {:^F),  +  ̂ V{A-R)F. 

Since  2V{A  -  R)F  =  2VAF  -  :SVRF 
=  ̂ VAF-VR2F 

the  condition  for  no  resultant  couple  is 

YR^F=2YAF, 

which  requires  2F  to  be  normal  to  2VAF, 

Example. — Given  a  force  u'+^/'+S'^  pounds  weight  at 

4^  +  57+6'^  ̂ ^^t,  and  a  force  of  7^* +  9;'+  ii>^  pounds  weight 
at  loi -{-  i2j-{-  14k  feet;  find  the  torque  which  must  be  sup- 

plied when  both  are  transferred  to  22 -|- 5/* -|- 3^>  so  that  the 
effect  may  be  the  same  as  before. 

VA,F,  =  3i-6/+3k, 

VA^F,  =  6i-  i2/  +  6k, 

2VAF=  gz  -  iSj'+gk, 
2F=St+iij+  14/&, 

YR2F=^7t-  4j—  18/^, 

Torque  =  —  28/—  147  +  2yk. 

By  taking  the  vector  product  of  the  above  equal  vectors 

with  the  reciprocal  of  ̂ F  we  obtain 

By  the  principle  previously  established  the   left   member 

resolves  into  —  R -{- SR^p.  2F;   and   the  right   member   is 

equivalent  to  the  complete  product  on  account  of  the  two 

factors  being  normal  to  one  another ;  hence 
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that  is,  R  =  ̂2{VAF)  +  SR^ .  2F. 

(I)  (2) 

The  extremity  of  R  lies  on  a  straight  line  whose  perpen- 
dicular is  the  vector  (i)  and  whose  direction  is  that 

of  the  resultant  force.  The  term  (2)  means  the 

projection  of  R  upon  that  line. 

The  condition  for  the  central  axis  is  that  the 

resultant    force   and    the   resultant   couple   should 

have  the  same  direction  ;  hence  it  is  given  by 

V 1 2VAF -  VR:2F\ 2F=o; 

that  is,  Y{VR^F):SF  =  Y{^AF):2F, 

By  expanding  the  left  member  according  to  the  same  prin- 

ciple as  above,  we  obtain 

—  {-2FyR  +  SR:SF,  2F=  V{:SAF)2F; 

therefore  R  =  ̂ Y^F{V2AF)  +  ̂gjf .  2F 

=  v(4f)(^^^^  +  ̂^4f  '  ̂̂' 
This  is  the  same  straight  line  as  before,  only  no  relation  is 

now  imposed  on  the  directions  of  ̂ i^and  2VAF;  hence  there 
always  is  a  central  axis. 

Example. — Find  the  central  axis  for  the  system  of  forces 

in  the  previous  example.  Since  ̂  /^=  8/+ 11/ +  M^>  the 
direction  of  the  line  is 

i/64  +  121  +  196*  . 

Since^  =  ̂'"^"'{"^^'^and^V^i^  =  9/-i8y+9>^,the -^^  351 

perpendicular  to  the  line  is 

^^'"^%"^'^^9^- ^^-^'+9^^  3-^^35^  +  54/- 243^j. 

Prob.  44.   Find  the  moment  at  goy/^T^l  ̂ ^  ̂^  pounds  at  4  feet 

io°/72o°  and  20  pounds  at  5  feet  3oV/i2o°. 
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Prob.  45.  Find  the  torque  for  41 -\- y -{-  2k  pounds  weight  at 

2/  —  3/'  +  !^  ̂ ee^>  ̂ ^d  2/  —  \j  —  ik  pounds  weight  at  —  3/  +  4/ '+  5^ 
feet  when  transferred  to  —  3/  +  2/  —  4k  feet. 

Prob.  46.  Find  the  central  axis  in  the  above  case. 

Prob.'  47.  Prove  that  the  mass-vector  drawn  from  any  origin  to  a 
mass  equal  to  that  of  the  whole  system  placed  at  the  center  of  mass 

of  the  system  is  equal  to  the  sum  of  the  mass-vectors  drawn  from 
the  same  origin  to  all  the  particles  of  the  system. 

Art.  9.    Spherical  Trigonometry. 

Let  i,j,  k  denote  three  mutually  perpendicular  axes.  In 

order  to  distinguish  clearly  between  an  axis  and  a  quadrantal 

version  round  it,  let  ̂      ,7     ,  f^'^  denote  ^^fc 
quadrantal  versions  in  the  positive  sense 

about  the  axes  i,j,  k  respectively.     The 

directions  of  positive  version  are  indicated   ^\ 

by  the  arrows. 

By  t'^H'"^^  is  meant  the  product  of  two 

quadrantal  versions  round   i\  it  is  equiv-  ^^ 
alent  to  a  semicircular  version  round  i\  hence  I'^H^'"'  =  f  1=— . 

Similarly y'^y^"  means  the  product  of  two  quadrantal  versions 

round/,  and/'V^"  =f  =  -.     Similarly  k"^'k^^'  =  ̂   =  ~. 

By  r^^f^^  is  meant  a  quadrant  round  i  followed  by  a  quad- 
rant round/;  it  is  equivalent  to  the  quadrant  from/ to  i,  that 

is,  k)  —  F'^'.  But/^^V^'  is  equivalent  to  the  quadrant  from  —  i 

to  — /,  that  is,  to  k''^''.  Similarly  for  the  other  two  pairs  of 
products.  Hence  we  obtain  the  following 

Rules  for  Versors. 

^•T/,^Va  _   _  ^-Va^  k^'^y^'  =  r^»» 

^TT/a^TT/a  _        -TT/a  ^•'r/j^-/a  _  yVa 

The  meaning  of  these  rules  will  be  seen  from  the  follow 

ing  application.      Lei    Iz  -\-  mj  •\-  nk  denote    any  axis,  then 
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•(//+  mj  -\-  nJif/^  denotes  a  quadrant  of  angle  round  that  axis. 
This  quadrantal  version  can  be  decomposed  into  the  three 

rectangular  components  ir^"^^  ̂ "'^^  nJi"^"^ ;  and  these  components 
.are  not  successive  versions,  but  the  parts  of  one  version.  Sim- 

ilarly any  other  quadrantal  version  (l'i-{-m'j -\- n'kf^'^  can  be 

resolved  into  IT/"^,  ̂'j""^"^-,  n'Ji'''^,  By  applying  the  above  rules, 
we  obtain 

ili  +  mj  +  nkY\l'i  +  m'j  +  n'ky'^ 

=  —(//'  +  ̂ ^'  +  ̂^') 
-  {7nn'  -  m'ny^-'  -  {nl'  -  n'l)f'''  -  (Im'  -  I'm^k"'* 

=  —  ill'  -{-  '^nm'  -{-  nn') 

-  {{ntn'  -  m'n)i-\-{nV  -  n'l)j-\-  {hn'  -  l'm)kY'\ 

Product  of  Two  Spherical  Versors. — Let  ̂   denote  the  axis 
and  b  the  ratio  of  the  spherical  versor  PA^  then  the  versor 

itself  is  expressed  by  /5*.  Similarly  let  y 
denote  the  axis  and  c  the  ratio  of  the 

spherical  versor  AQ,  then  the  versor  itself 

is  expressed  by  y^. 

Now     yS*  =  cos  <^  +  sin  b .  /5''/^ 

and  y'^  =  cos  ̂   +  sin  ̂   .  y^^"" ; 
therefore 

py  =  (cos  b  +  sinb.  /3"/')(cos  c  +  sin  ̂   .  y""^') 

=  cos  b  cos  c  +  cos  bsinc .  y""^'  -\-  cos  ̂   sin  3 .  /S"^^* 

+  sin  ̂   sin  ̂  .  /J'^^'';/    . But  from  the  preceding  paragraph 

^-/,y-/.  ̂   _  COS  /3y  -  sin  /3y  .  ̂""^^ ; 

therefore         /3^y'  =  cos  b  cos  ̂   —  sin  <^  sin  c  cos  ̂ y  (i) 

+  -jcos^^sin^.  y  -{-  cos  <:  sin  b .  /3  —  sin  b  sin  c  sin  /3y  .  /3y\''^'.  (2) 
The  first  term  gives  the  cosine  of  the  product  versor  ;  it  is 

equivalent  to  the  fundamental  theorem  of  spherical  trigonom- 
etry, namely, 

cos  a  =  cos  b  cos  <;  +  sin  <^  sin  c  cos  A, 
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^here  A   denotes  the  external  angle  instead  of  the  angle  in- 

•cluded  by  the  sides. 
The  second  term  is  the  directed  sine  of  the  angle ;  for  the 

square  of  (2)  is  equal  to  i  minus  the  square  of  (i),  and  its  di- 

rection is  normal  to  the  plane  of  the  product  angle.* 

Example.— Let  /3  =  307/45°  and  y  =  607/30°.     Then- 

cos  fiy  =  cos  45°  cos  30°  +  sin  45°  sin  30°  cos  30°, 

and  sin  fiy  .  Py  =  V/3y ; 

but  yS  =  cos  45°  /  +  sin  45°  cos  30°y  +  sin  45°  sin  30°  k, 

and  y  =  cos  30°  t  +  sin  30°  cos  6o°y  +  sin  30°  sin  60°  k ; 
therefore 

Y/3y  =  \ sin  45°  cos  30°  sin  30°  sin  60° 

—  sin  45°  sin  30°  sin  30°  cos  60° (^ 

+  jsin45°sin30°  cos  30°  —  cos 45°  sin  30°  sin  60°  j/* 

+  Scos45°sin30°cos6o°—  sin  45°  cos  30°  cos  30°}^. 

Quotient  of  Two  Spherical  Versors. — The  reciprocal  of  a 
^iven  versor  is   derived    by  changing  the  sign  of  the  index ; 

y'''   is   the    reciprocal  of  y^.     As  /5*  =  cos  /^  +  sin  ̂  .  /S^'^^f  and 

y-^  =  cos  c  —  sin  c .  y^  ", 

P'y'^  =  cos  b  cos  c  -\-^\w  b  sin  c  cos  Py 

+  -!cos  ̂  sin  b .  p—  cosb  sinc.y  ~{-  sin  b  sin  c  sin  py ,  fty  Y^"^* 

Product  of  Three  Spherical  Versors. — Let 

«'*  denote  the  versor  PQ,  /3*  the  versor  QR, 

and  y'  the  versor  RS ;  then  a'^fi^y"  denotes 

PS.     Now  a^/?V  
^^ 

=  (cos  a-\-s\na.  a^'^icos  b -{- sin  b ,  /3''^^)(cos  c  +  sin  c . ;/"/») 
:=  cos  a  cos  b  cos  c  (i) 

+  cos  a  cos  <^  sin  c.  y^'"^  +  cos  a  cos  c  sin  b .  0"^^ 
-\-  cos  b  cos  ̂   sin  <2; .  a:   '  (2) 

4"  cos  a  sin  3  sin  ̂  .  /3^^*y''^'*  ~\-  cos  b  sin  <^  sin  ̂  .  a^'^y^^'^ 

+  cos  c  sin  ̂   sin  <^ .  a'''fi'''''     (3) 
*  Principles  of  Elliptic  artd  Hyperbolic  Analysis,  p.  2. 
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+  sin  a  sin  bsmc,  a^''fi'''''y"'\  (4) 

The  versors  in  (3)  are  expanded  by  the  rule  already  ob- 
tained, namely, 

The  versor  of  the  fourth  term  is 

^-/.p-Jy/.  ̂   _  (cos  «y^+  sin  ayS  .  ̂"/«)//' 

=  —  cos  o'/?  .  y'^''-[-s\n  a§  cos  ary5;/4~sin  «'/5  sin  ajSy .  a^x''^^ 

Now  sin  Of/?  sin  «'/?)/ .  ajSy  —  cos  ay  .  13  —  cos  /?;/  .  a:  (p.  45 1),. 
hence  the  last  term  of  the  product,  when  expanded,  is 

sin  a  sin  <^  sin  ̂   j  —  cos  aft .  y""^'.  +  cos  ay .  /5'^/» 

—  cos  /3y .  a''/'  +  cos~^y  \ .. Hence 

cos  a*/?*y^  =  cos  «  cos  3  cos  r  —  cos  a  sin  <^  sin  ̂   cos  /3y 
—  cos  d  sin  a  sin  ̂   cos  ay  —  cos  c  sin  a  sin  <^  cos  o'y^ 

-{-  sin  ̂   sin  ̂   sin  c  sin  o-yS  cos  apy^ 

and,  letting  Sin  denote  the  directed  sine. 

Sin  a^/S^y"  =  cos  a  cos  ̂   sin  ̂  .  7  +  cos  a  cos  ̂   sin  ̂  .  /? 

-(-  cos  d  cos  ̂   sin  a  .  a  —  cos  a  sin  d  sin  ̂   sin  y^;/  .  /3y 

—  cos  ̂   sin  a  sin  ̂   sin  ay .  o';/ 

—  cos  c  sin  «  sin  ̂   sin  aj3 .  a/3 

—  sin^sin^sin^jcosory^.  y— cos  ay  .  ft -{-cos  j3y .  a}.*" 

Extension  of  the  Exponential  Theorem  to  Spherical  Trigo- 

nometry.— It  has  been  shown  (p.  458)  that 

cos  ft''y^  =  cos  3  cos  ̂   —  sin  ̂   sin  c  cos  fty 
and 

(sin  ftyy^"  =  cos  c  sin  d .  ft^''  +  cos  ̂   sin  ̂   .  y^'' 

—  sin  b  sin  c  sin  fty .  ̂''^*. 
b'         b'         b'    . 

Now  cos  b  —  i   ^  -h  — 7  —  ̂ T  +  etc. 
2!    '4!       6! 

*  In  the  above  case  the  three  axes  of  the  successive  angles  are  not  perfectly^ 
independent,  for  the  third  angle  must  begin  where  the  second  leaves  off.  But 

the  theorem  remains  true  when  the  axes  are  independent  ;  the  factors  are  their 

quaternions  in  the  most  general  sense. 
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and  sin  ̂   =  ̂  —  ̂   +  77  —  ̂ tc. 

Substitute  these  series  for  cos  b,  sin  b,  cos  c^  and  sin  c  in 

the  above  equations,  multiply  out,  and  group  the  homogeneous 

terms  together.     It  will  be  found  that 

cos  y^V'  =  I  -  "tS^'  +  2^^  COS  /?r  +  ̂ M 

+  -^S^*  +  4^V  COS  ̂ y  +  6<^V'  +  Afic'  cos  /3y  +  c*\ 

-  ̂{^'  +  6^V  cos  /?>/  +  I5^V'  +  2obY  cos  /?;/ 

+  I  SbY  +  6/^^'  cos  y^;/  +  ̂^  J  +  .  .  ., 
where  the  coefficients  are  those  of  the  binomial  theorem,  the 

only  difference  being  that  cos  /3y  occurs  in  all  the  odd  terms 

<is  a  factor.  Similarly,  by  expanding  the  terms  of  the  sine,  we 
obtain 

<Sin  ̂ yf  =  ̂   .  /5"/'  +  ̂ .  y-/^  -  be  sin  py .  J/"" 

+  —\bc'  +  b'c\  sin  fiy  .  /?)/"/' 

'\-^\b\  fT^^  +  5^V .  y'^  +  lO^V  .  /?"/' 

By  adding  these  two  expansions  together  we  get  the  ex- 

pansion for  y5V>  namely, 

-  ̂   ]  ^^  +  2bc{Q,os>  py  +  sin  ̂ y .  ̂g^'^O  +  ̂' } 

-\-^\b'+  4^V(cos  /?;/  +  sin  fty .  y^'^^O  +  6^V 

4-  4^^<cos  /^K  +  sin  py  .  y5;  "'')  +  ̂* }  +  ,.  .  , 
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By  restoring  the  minus,  we  find  that   the  terms   on   the 
second  line  can  be  thrown  into  the  form 

^]3./9'/^+..//^i', 

2! 

and  this  is  equal  to 
I 

2 

where  we  have  the  square  of  a  sum  of  successive  terms.     In  a 
similar  manner  the  terms  on  the  third  Hne  can  be  restored  to 

that  is,  -^{b.ft^'^  +  c.f^^y. Hence 

Extension  of  the  Binomial  Theorem. — We  have  proved 

above  that  ̂ ^^'/^^'^/^  =  ̂ ^"/^  +  aT/2  provided  that  the  powers 
of  the  binomial  are  expanded  as  due  to  a  successive  sum,  that 

is,  the  order  of  the  terms  in  the  binomial  must  be  preserved. 

Hence  the  expansion  for  a  power  of  a  successive  binomial  is 

given  by 

+   ^/^«-V'./5(''-^W2);j/''+etc. 

*  At  page  386  of  his  Elements  of  Quaternions,  Hamilton  says  :  "In  the 
present  theory  of  diplanar  quaternions  we  cannot  expect  to  find  that  the  sum  of 

the  logarithms  of  any  two  proposed  factors  shall  be  generally  equal  to  the 

logarithm  of  the  product;  but  for  the  simpler  and  earlier  case  of  coplanar 

quaternions,  that  algebraic  property  may  be  considered  to  exist,  with  due 

modification  for  multiplicity  of  value."  He  was  led  to  this  view  by  not  dis- 
tinguishing between  vectors  and  quadrantal  quaternions  and  between  simul- 

taneous and  successive  addition.  The  above  demonstration  was  first  given  in 

my  paper  on  "The  Fundamental  Theorems  of  Analysis  generalized  for  Space.'* 
It  forms  the  key  to  the  higher  development  of  space  analysis. 
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Example.— Let  b  =  ̂   and  c=\,  /?  =  .^o°//45°>  Y  =  6o°//3Q°. 

(^ .  yg'^A  _|_  ̂ .  y-/y  ̂   _  J  ^«  +  ̂'^  _i-  2^^  cos  y^;/  +  2bc{sm  /3yy^'\ 

=  -  (yio  +  A  +  ̂   cos  M  -  -^oCsin  ̂ rf^^ 
Substitute  the  calculated  values  of  cos  /3y  and  sin  /3y  (page  459). 

Prob.  48.  Find  the   equivalent  of   a  quadrantal  version   round 

2 
r=y  + :>^   followed    by  a  quadrantal  version  round 

244 

Prob.  49.  In  the  example  on  p.  459  let  b  =  25°  and  c  =  50°;  caK 
culate  out  the  cosine  and  the  directed  sine  of  the  product  angle. 

Prob.  50.  In  the  above  example  calculate  the  cosine  and  the 
directed  sine  up  to  and  inclusive  of  the  fourth  power  of  the  bino- 

mial. (Ans.  cos  =  .9735.) 
Prob.   51.  Calculate   the  first   four   terms   of   the   series  when 

0//0y Prob.  52.  From  the  fundamental  theorem  of  spherical  trigo- 
nometry deduce  the  polar  theorem  with  respect  to  both  the  cosine 

and  the  directed  sine. 

Prob.  53.  Prove  that  if  a**,  /3^,  y^  denote  the  three  versors  of  a 
spherical  triangle,  then 

sin  ̂ y  _  sin  ya  _  sin  a^ 
sin  a  sin  b  sin  c 

Art.  10.    Composition  of  Rotations. 

A  version  refers  to  the  change  of  direction  of  a  line,  but  a 

rotation  refers  to  a  rigid  body.     The  composi-     g 
tion  of  rotations  is  a  different  matter  from  the 

composition  of  versions. 

Effect  of  a  Finite  Rotation  on  a  Line. — Sup- 
pose that  a  rigid  body  rotates  8  radians  round 

the  axis  /3  passing  through  the  point  O,  and  that 

R  is  the  radius-vector  from  O  to  some  particle. 
In  the  diagram  OB  represents  the  axis  /?,  and 

OP  the  vector  R.  Draw  OK  and  OL,  the  rectangular  compo* 
nents  of  R. 

/3&R  =  (cos  ̂   +  sin  ̂  .  fi''^^)rp 
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=  r{cos  6^  +  sin  ̂   .  (f^'){cos  ̂ p.ft-\- sin  ftp . |^) 

=  r\cos  Pp .  /J  +  cos  e  sin  ftp  .  'ft'pft  +  sin  6^  sin  ftp.  ftp]. 
When  cos  ySp  =  o,  this  reduces  to 

ft^R  =  cos  OR  +  sin  OV(ftR), 
The  general  result  may  be  written 

ft^R  =  SftR  .  y5+  cos  e{VftR)ft  +  sin  6?Vy5i?. 
Note  that  (VftR)ft  is  equal  to  Y(VftR)ft  because  SftRft  is 

O,  for  it  involves  two  coincident  directions. 

Example. — Let  ft  =  h'-\-mj-\-  nk,  where  P  A^  m^  ■\- n^  =  i 
and  R  —  xi  -\-yj-\-zk  ;  then  "SiftR  =  Ix -\- my -]- nz 

Y{ftR)ft  = 

and 

mz  —  ny 

I 

i 

YftR  = 

nx  —  h 
ly  —  'mx\ m               n 

J        k I    m     n 

X  y      z . 

i  j  k 

H  ence  ft^R  =  {Ix  -f-  fny  -\-  nz)(li  +  mj  -f-  nk) 

+  cos^ 

+  sin^ 

mz  — 

ny 

I 

( i 

/ m n 

X y z 

i j k 

nx  —  lz 

m 

j 

ly  —  mx n 

k 

To  prove  that  ft^p  coincides  with  the  axis  of  ft-^f^ p^f^ft^/^. 
Take  the  more  general  versor  p*.  Let  OP  represent  the  axis 

ft,  AB  the  versor  /J-V«,  BC  the  versor  p\ 
Then  (AB)(BC)  =  AC  =  DA,  therefore 

(AB)(BC)(AE)  =  (DA)(AE)  =  DE.  Now 
DE  has  the  same  angle  as  BC,  but  its  axis 

has  been  rotated  round  P  by  the  angle  b. 

Hence  if  6^  =  it/2,  the  axis  of  ft-^hp^f*ft^/^ 

will  coincide  with  ft^p!^ 
The  exponential  expression    for 

*  This  theorem  was  discovered  by  Cayley.  It  indicates  that  quaternion 

multiplication  in  the  most  general  sense  has  its  physical  meaning  in  the  compo- 
sition of  rotations. 
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^-V8pV2ygV2  is  ̂ -i^^'^/*+J''p'^/'4-i3^"/',  ̂ hich  may  be  expanded 
according  to  the  exponential  theorem,  the  successive  powers 

of  the  trinomial  being  formed  according  to  the  multinomial 

theorem,  the  order  of  the  factors  being  preserved. 

Composition  of  Finite  Rotations  round  Axes  which  Inter- 

sect.— Let  13  and  y  denote  the  two  axes  in  space  round  which 

the  successive  rotations  take  place,  and  let  y5*  denote  the  first 

and  y^  the  second.  Let  yS*  X  y'  denote  the  single  rotation 
which  is  equivalent  to  the  two  given  rotations  appHed  in 

succession  ;  the  sign  X  is  introduced  to  distinguish  from  the 

product  of  versors.  It  has  been  shown  in  the  preceding  para- 

graph that 

and  as  the  result  is  a  line,  the  same  principle  applies  to  the 

subsequent  rotation.     Hence 

y\p^f))  =  ;/-^/2(/J-V2pV2y(5V2)^V2 
=  (;/-^/2yS- V2)pT/2^y^V2^./2)  ̂  

because  the  factors  in  a  product  of  versors  can  be  associated  in 

any  manner.     Hence,  reasoning  backwards. 

Let  7n  denote  the  cosine  of  /3^/^y^/^,  namely, 

cos  d/2  cos  c/2  —  sin  d/2  sin  ̂ /2, 
and  n.  v  their  directed  sine,  namely, 

cos  d/2  sin  c/2.y-\-cos  c/2  sin  b/2  .  y^— sin  b/2  sin  c/2  sin  ̂ y  .  /3y; 

then  ̂ ^  y^  y"  =  nt^  —  n^  -\-  2mn .  r. 

Observation. — The  expression  {ft^/'^y'/'^y  is  not,  as  might  be 
supposed,  identical  with  I5^y'.  The  former  reduces  to  the  lat- 

ter only  when  ft  and  y  are  the  same  or 

opposite.  In  the  figure  yS*  is  represented 

by  PQ,  y'  by  QR,  ftY  by  PR,  ft'/'Y/^  by 
ST,  and  {ft'^/y/^y  by  SU,  which  is  twice 
ST.  The  cosine  of  SU  differs  from  the 

cosine  of  PR  by  the  term  —(sin  b/2  sin  c/2  sin  ftyy. 
evident  from  the  figure  that  their  axes  are  also  different. 



48  VECTOR    ANALYSIS    AND    QUATERNIONS. 

Corollary. — When  b  and  c  are  infinitesimals,  cos  /5*x  ;/'=!> 

and  Sin  y^*  X  y"  —  b.  ̂   -\-  c  ,yy  which  is  the  parallelogram  rule 
for  the  composition  of  infinitesimal  rotations. 

Prob.  54.  Let  ̂   =  3^/45°,  ̂   =  V3»  and  R  =  2/ -  3/+  4>&  ; 
calculate  /5  J^. 

Prob.  55.  Let  ̂   =  9^/90°,  0=  7r/4,  R  =  -  /+  2/  -  ̂ k  > 

calculate  ̂ ^R. 

Prob.  56.   Prove  by  multiplying  out  that  /?"  V2pT/2y!5V2  =  l/?*/)}''/^; 
Prob.  57.  Prove  by  means  of  the  exponential  theorem  that 

y-^ft^y'  has  an  angle  by  and  that  its  axis  is  y^ft. 

Prob.  58.  Prove  that  the  cosine  of  {P^/^y'/^f  differs  from  the 

cosine  of  ft^y'  by  —  (sin  -  sin  —  sin  fiy]  . 

Prob.  59.  Compare  the  axes  of  {ft^/y/^y  and  /?V. 

Prob.  60.  Find  the  value  of  /?*  X  y"  when   /?  ="07/90°  and 

y  =~^;^/9o°- Prob.  61.  Find  the  single  rotation  equivalent  to  /'^/^  X/'/^  x  k"/\ 
Prob,  62.  Prove  that  successive  rotations  about  radii  to  two 

corners  of  a  spherical  triangle  and  through  angles  double  of  those 
of  the  triangle  are  equivalent  to  a  single  rotation  about  the  radius 
to  the  third  corner,  and  through  an  angle  double  of  the  external 
angle  of  the  triangle. 
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Algebra  of  the  plane,  7;  of  space,  7. 
Algebraic  imaginary,  22  (footnote). 
Argand  method,  24  (footnote). 
Association  of  three  vectors,  18. 

Bibliography,  8  and  preface. 
Binomial  theorem  in  spherical  analysis, 

44. 
Cartesian  analysis,  8. 

Cayley,  46. 
Central  axis,  38. 

Coaxial  quaternions,  21;  addition  of, 

23;    product  of,  23;    quotient  of,  24. 
Complete  product  of  two  vectors,  14,  28; 

of  three  vectors,  31. 

Components  of  versor,  21;  of  quater- 
nion, 22;  of  reciprocal  of  qua- 

ternion, 22. 

Composition  of  two  simultaneous  com- 

ponents, 10;  of  any  number  of  simul- 
taneous components,  12;  of  suc- 

cessive components,  13;  of  coaxial 

quaternions,  23;  of  simultaneous 

vectors  in  space,  25;  of  mass-vec- 
tors, 35;  of  located  vectors,  36; 

of  finite  rotations,  45. 

Coplanar  vectors,  14. 

Couple  of  forces,  :^6;  condition  for 
couple  vanishing,  39. 

Cyclical  and  natural  order,  20. 

Determinant  for  vector  product  of 

two  vectors,  28;  for  second  par- 
tial product  of  three  vectors,  32 

and  33;  for  scalar  product  of  three 
vectors,  33. 

Distributive  rule,  30. 

Dynamo  rule,  27. 

Electric  motor  rule,  27. 

Exponential  theorem  in  spherical  trigo- 

nometry, 42;  Hamilton's  view,  44 
(footnote). 

Finite  rotations,  45;  versor  expression 

for,  46;  exponential  expression  for, 

46. 

Formal  laws,  12  (footnote). 

Fundamental  rules,  12  (footnote)  and  14 

(footnote) . 

Hamilton's  analysis  of  vector,  9; 
idea  of  quaternion,  21  (footnote);  view 

of  exponential  theorem  in  spherical 
analysis,  44  (footnote). 

Hayward,  24  (footnote). 
Hospitaller  system,  9. 

Imaginary  algebraic,  22  (footnote). 

Kennelly's  notation,  9. 

Located  vectors,  36. 

Mass-vector,  35;   composition  of,  35. Maxwell,  35. 

Meaning  of  dot,  9;  of  Z,  9;  of  S,  15; 

of  V,  16;  of  vinculum  over  two  axes, 
16;  of  7,  25;  of  ̂ rr  as  index,  39. 

Notation  for  vector,  9. 

Natural  order,  20. 

Opposite  vector,  17. 
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Parallelogram  of  simultaneous  com- 

ponents, lO. 

Partial  products,  14  and  28;  of  three 

vectors,  32;  resolution  of  second 

partial  product,  2^. 

Polygon  of  simultaneous  components, 
12. 

Product,  complete,  14  and  28;  par- 
tial, 14  and  28;  of  two  coplanar 

vectors,  14;  scalar,  15  and  28;  vec- 
tor, 16  and  29;  of  three  coplanar 

vectors,  18;  of  coaxial  quaternions, 

24;  of  two  vectors  in  space,  26; 

of  two  sums  of  simultaneous  vec- 

tors, 30;  of  three  vectors,  31;  of 

two  quadrantal  versors,  40;  of  two 

spherical  versors,  40;  of  three 

spherical  versors,  41. 

Quadrantal  versor,  17. 

Quaternion,  definition  of,  21;  etymol- 

ogy of,  21  (footnote);  coaxial,  21; 

reciprocal  of,  22. 

Quaternions,  definition  of,  7;  relation 

to  vector  analysis,  7. 

Quotient  of  coaxial  quaternions,  24. 

Rayleigh,  23. 

Reciprocal  of  a  vector,  17;  of  a  qua- 
ternion, 22. 

Relation  of  right-handed  screw,  27.     v 
Resolution  of  a  vector,  11;  of  second 

partial  product  of  three  vectors,  33. 

Rotations,  finite,  45. 

Rules  for  vectors,  14  and  26;  for 

versors,  39;  for  expansion  of  product 

of  two  quadrantal  versors,  40;  for 

dynamo,  27. 

Scalar  product,    15;    of  two  coplanar 

vectors,  15;  geometrical  meaning,  15. 

Screw,  relation  of  right-handed,  27. 

Simultaneous  components,  9;  com- 

position of,  10;  resolution  of,  11; 

parallelogram  of,  10;  polygon. of,  12; 

product  of  two  sums  of,  30. 

Space-analysis,  7;  advantage  over 
Cartesian  analysis,  8;  foundation  of, 
12  (footnote). 

Spherical  trigonometry,  39;  funda- 

mental theorem  of,  40;  exponential 

theorem,  42;    binomial  theorem,  44. 

Spherical  versor,  40;  product  of  two, 

40;  quotient  of  two,  41;  product 
of  three,  41. 

Square  of  a  vector,  14;  of  two  simul- 
taneous components,  19;  of  two 

successive  components,  19;  of  three 

successive  components,  19. 

Stringham,  24  (footnote). 

Successive  components,  9;  composition 
of,  13. 

Tait's  analysis  of  vector,  9. 
Tensor,  definition  of,  9. 
Torque,  37. 

Total  vector  product  of  three  vectors, 

34- 

Unit-vector,  9. 

Vector,  definition  of,  8;  dimensions  of, 

9;  notation  for,  9;  unit- vector,  9; 

simultaneous,  9;  successive,  9;  co- 

planar, 14;  reciprocal  of,  17;  oppo- 
site of,  17;    in  space,  25. 

Vector  analysis,  definition  of,  7;  rela- 
tion to  Quaternions,  7. 

Vector  product,  16;  of  two  vectors,  16; 
of  three  vectors,  34. 

Versor,  components  of,  21  and  40; 

rules  for,  39;  product  of  two  quad- 
rantal, 40;  product  of  two  general 

spherical,  40;  of  three  general 

spherical,  41. 
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